Prognostics for Electronics

Jose Celaya¹, Sankalita Saha², Phil Wysocki³, Kai Goebel⁴ ¹Stinger Ghaffarian Technologies Inc., ²Mission Critical Technologies, ³ASRC Research and Technology Solutions, ⁴NASA Ames Research Center CA

Motivation

- Electronic components have an increasingly critical role in on-board autonomous functions for vehicle controls, communications, navigation, and radar systems. Future aircraft systems will rely more heavily on electric and electronic components
- To obtain an understanding of the behavior of anticipate failures and predict the remaining life of embedded electronics
- Investment in prognostics technologies can enable risk mitigation and increase reliability, while lowering cost for redundant systems

Objectives

ESD stress

Experiments

- A preliminary thermal overstress aging test was conducted on IGBTs and power MOSFETs
 - International Rectifier IRG4BC30KD with 600V/15A rating in a T0220 package
 - International Rectifier IRF520N with 100V/9A rating in a T0220 package
- The temperature was measured from the package without external heatsink
- The experiment was stopped after thermal runaway or latch-up failure
- A hysteresis temperature controller was used to control the aging process through switching of the gate voltage
- Aging experiment settings for IGBT:
 - Gate driven by a PWM signal at 10V, 10KHz and 30-40% duty cycle
 - Temperature thresholds: Low=329°C,

Failures observed in IGBTs

- The average collector-emitter current was monitored during the experiment in order to detect latch-up condition
- Latch-up failure occurred at ~90 minutes of aging. As a result, gate control was lost. In addition, the device was found to be functional after returning to room temperature

Precursor of Failure

The collector-emitter voltage turn-OFF transient showed a significant decrease in its peak value with increase in temperature and aging time

