
© 2011 Galois, Inc.

National Aeronautics and Space Administration

www.nasa.gov

Monitor Synthesis for Software
Health Management

Lee Pike | leepike@galois.com
Galois, Inc.

2011 Annual Technical Meeting
May 10–12, 2011
St. Louis, MO

Alwyn Goodloe | NASA Langley Research Center
Robin Morisset | Ecole Normale Superieure
Sebastian Niller | National Institute of Aerospace
Nis Wegmann | Technical University of Denmark

© 2011 Galois, Inc.

Need

How do you know your embedded software won’t fail?

 Certification (e.g., DO-178B) is largely process-oriented
 Testing exercises a small fraction of the state-space
 It's probably not formally verified

 Even if so, just a small subsystem
 And making simplifying assumptions

I'll argue: need to detect/respond at runtime

© 2011 Galois, Inc.

Yes, it's Still a Problem

2005-2008:
 Malaysia Airlines Flight 124 (Boeing 777)

 “Software anomaly”
 Qantas Airlines Flight 72 (Airbus A330)

Transient fault in the inertial reference unit
 Space Shuttle STS-124 aborted launch

 Bad assumptions about distributed fault-tolerance

© 2011 Galois, Inc.

Just the FaCTS, Ma’am:
The Constraints

 Runtime monitoring for real-time embedded systems should
satisfy the FaCTS:

 FFunctionality: don’t change the target’s behavior

 CCertifiability: don't require re-certification, or make it easy
Don't go changing sources.

 TTiming: don’t interfere with the target’s timing

 SSWaP: don’t exhaust size, weight, power reserves

How do we monitor a system without
violating these constraints?

© 2011 Galois, Inc.

Outline

1. The Copilot language and compiler

2. Embedded domain-specific languages

3. Low-cost high-assurance

4. Pilot-study1: injecting software faults in a fault-tolerant air-
speed system

5. Conclusions

1Pun intended

© 2011 Galois, Inc.

Copilot: Embedded System Monitoring

 Copilot is a language, compiler, and
verification tools

 Compiles monitor specifications to
embedded C

 Constant time, constant space

 Generates its own scheduler: no OS
needed

 Time-triggered monitoring

 Monitor program:

 Inputs: monitored memory

 Outputs: trigger functions, if a monitor is
violated

Monitor
specification

Embedded C
implementation

Scheduler

Target
program

Executable

gcc

compiler

link

gcc

Copilot

© 2011 Galois, Inc.

Copilot Language

 A simple stream language
 Think: data-flow of infinite lists (streams) – LUSTRE
 Streams give a discrete, synchronous view of real-time
 Strongly & statically typed variables with no lossy casts

let x = varW64 “x”
x .= [0] ++ x + 2

X → 0, 2, 4, 6 ...

© 2011 Galois, Inc.

Copilot Language

compile spec “foo”
 baseOpts

void foo() {
 {
 static uint8_t __scheduling_clock = 1;
 if (__scheduling_clock == 0) {
 __r0(); /* foo.update__x */
 __scheduling_clock = 4;
 }
 else
 __scheduling_clock = __scheduling_clock - 1;
 }
 {
 static uint8_t __scheduling_clock = 2;
 if (__scheduling_clock == 0) {
 __r1(); /* foo.output__x */
 . . .

/* foo.update__x */
static void __r0() {
 bool __0 = true;
 uint32_t __1 = 0UL;
 uint32_t __2 =
 copilotStatefoo.foo.outputIndex__x;
 uint32_t __3 = __1 + __2;
 uint32_t __4 = 2UL;
 . . .

let x = varW64 “x”
x .= [0] ++ x + 2

State-machine functions
Schedule

© 2011 Galois, Inc.

 interpret copilotVs extVs s =

 case s of

 Const c -> repeat c

 Var v -> getElem v copilotVs

 ExtVar _ v -> checkV v (\v' -> (getElem v' extVs))

 ExtArr _ (v,s') -> checkV v (\v' -> map (\i -> getElem v' extVs

 !! fromIntegral i)

 (interpret copilotVs extVs s'))

 Append ls s' -> ls ++ interpret copilotVs extVs s'

 Drop i s' -> drop i $ interpret copilotVs extVs s'

 F f _ s' -> map f (interpret copilotVs extVs s')

 F2 f _ s0 s1 -> zipWith f (interpret copilotVs extVs s0)

 (interpret copilotVs extVs s1)

 F3 f _ s0 s1 s2 -> zipWith3 f

 (interpret copilotVs extVs s0)

 (interpret copilotVs extVs s1)

 (interpret copilotVs extVs s2)

Copilot Interpreter
(In One Slide)

© 2011 Galois, Inc.

Point #1: Embedded DSLs
Make Things Better

 A domain-specific language (DSL) is a special-purpose programming
language.

E.g., sed/awk, Simulink, R

 An embedded DSL (eDSL) is a DSL written as a library in a general-
purpose programming language

Often the host language is a functional language, e.g., Haskell,
Scheme, OCaml

eDSL

Host language

analyzer()
interpreter()
compiler()

“observers”

© 2011 Galois, Inc.

Point #1: Embedded DSLs
Make Things Better

Why eDSLs?
 Lexer, parser, type-checker, etc. for free and more likely correct
 Macro language for free (the entire host language)

In eDSLs, the macro language is primary
 Libraries for free
 Much easier to make your own modifications

For Copilot: can we have the advantages of functional languages
without suffering its limitations (timing, control-flow, memory size)?

© 2011 Galois, Inc.

Point #1: Embedded DSLs
(Sometimes!) Make Things Better

Why not?

 The DSL syntax must be a “sub-syntax” of your host
language

 In some cases, efficiency can be tricky
 More esoteric error messages
 eDSLs in certification unexplored
 Harder to make proprietary/closed sourceResearch

topics!

© 2011 Galois, Inc.

eDSLs: C'mon, Everybody's Doing It

 Eaton (embedded control systems)
 Ericsson (DSP)
 Credit Suisse and other trading houses (e.g., derivatives pricing)
 Galois (Numerous)

© 2011 Galois, Inc.

Copilot as an eDSL

Haskell

Atom

Copilot core language

Voting

Interpreter

Regular Expressions

Bounded linear-
temporal logic

Past-time LTL

...

...

http://hackage.haskell.org/package/atom

C

binary

gcc
eDSL
program

~2k LOCs

~2.3k LOCs

© 2011 Galois, Inc.

The Power of eDSLs

"If the majority of the three
engine temperature probes
has exceeded 250
degrees, then the cooler is
engaged and remains
engaged until the
temperature of the majority
of the probes drop to 250
degrees or less.
Otherwise, trigger an
immediate shutdown of the
engine.”

-- external variables
t0 = extW8 "temp_probe_0"
t1 = extW8 "temp_probe_1"
t2 = extW8 "temp_probe_2"
cooler = extB "fan_status"
-- Copilot variables
maj = varW8 "maj"
check = varB "maj_check"
overHeat = varB "over_heat"
monitor = varB "monitor"

engineMonitor = do
 let temps = map (< 250) [t0, t1, t2]
 maj .= majority temps
 check .= aMajority temps maj
 overHeat `ptltl`
 ((cooler || maj && check)
 `since' not maj)
 monitor .= not overHeat
 trigger monitor "shutoff" void

Librarie
s

approx.
800LoCs of C

© 2011 Galois, Inc.

Point #2: Low-Cost High-Assurance

Who watches the watchmen?

Some lessons:

 Types are free proofs
 (Try) to avoid compiler bugs/non-standard behavior
 Compile -Wall, compile -Wall, compile -Wall
 Ensure interpreter == compiler
 Ensure interpreter == compiler, millions of times
 Test coverage (line, branch, functional call) using gcov

© 2011 Galois, Inc.

Point #2: Low-Cost High-Assurance

 Prove memory-safety.

CBMC http://www.cprover.org/cbmc/
 Verify the compilation – a “poor man's verifying compiler”)

(future work)

Copilot
Specification

Haskell
program

Hard real-
time C

C implemented
interpreter

Symbolic
Interpreter

Compiler

SBV

CBMC

https://github.com/LeventErkok/sbv

http://www.cprover.org/cbmc/

© 2011 Galois, Inc.

Interlude: Pitot Failures

© 2011 Galois, Inc.

Failures cited in
 Northwest Orient Airlines Flight 6231 (1974)---3 killed

Increased climb/speed until uncontrollable stall

 Birgenair Flight 301, Boeing 757 (1996)---189 killed

One of three pitot tubes blocked; faulty air speed indicator

 Aeroperú Flight 603, Boeing 757 (1996)---70 killed

Tape left on the static port(!) gave erratic data

 Líneas Aèreas Flight 2553, Douglas DC-9 (1997)---74 killed
 Freezing caused spurious low reading, compounded with a failed

alarm system
 Speed increased beyond the plane’s capabilities

 Air France Flight 447, Airbus A330 (2009)---228 killed
 Airspeed “unclear” to pilots
 Still under investigation

 ...

Interlude: Pitot Failures

© 2011 Galois, Inc.

Test Bed

 Representative of fault-tolerant systems

 4 X STM32 microcontrollers

 ARM Cortex M3 cores clocked at 72 Mhz

 5 differential pressure sensors

 Senses dynamic and static pitot tube
pressure

 Pitot tubes measure airspeed

 Designed to fit UAS (unpiloted air system)

Size, power, weight,...

T

© 2011 Galois, Inc.

Aircraft Configuration
Edge 540T-R2

© 2011 Galois, Inc.

Copilot Monitors

Introduced software faults to be caught by Copilot monitors:
 Abrupt airspeed change: airspeed ∆ > 12 m/s
 Fault-management assumptions

 Fault-management used the Boyer-Moore majority vote algorithm
 Check agreement between the voted values

Uses coordinating distributed monitors

 Subsequent flights:
 Ground-station communication protocol
 Other sensors

© 2011 Galois, Inc.

Monitoring Results

 Monitoring approach did not disrupt the
FaCTS properties of the observed
system

 Under ~100 C expressions per monitor
 Binaries on the order of 10k

 Monitoring via sampling works for
periodic tasks

 Simulated mode change
 Next time: didn’t think to monitor for a

taped pitot tube!

© 2011 Galois, Inc.

Future Work Test-Bed

In collaboration with Portland State University

 ArduPilot autopilot (open source)
 Altitude hold (barometer & sonar)
 Position hold (GPS magnometer)
 Collision avoidance (infrared)
 Stabilization (gyroscope)
 Battery monitoring

approx.
$400 parts

© 2011 Galois, Inc.

Download, Develop,
Use http://leepike.github.com/Copilot/

BSD3

BSD3

© 2011 Galois, Inc.

Future Work

 The steering problem (mode change)

Right now: escape to raw C

 Timing analysis: to monitor property p, need to sample at

rate r

E.g., state-based properties

 Security monitoring for embedded systems

Tech transfer to AFRL

© 2011 Galois, Inc.

Conclusions

 Problem space: hard real-time embedded C
 The FaCTS: Functionality, Certifiability, Timing, SWaP
 Approach: monitoring by periodic sampling

The eDSL approach

A path to fast, reliable compilers and languages

 Nobody watches the watchmen
Prove/test/verify your compiler is correct

© 2011 Galois, Inc.

Thanks

 Dr. Ben Di Vito
 NASA Langley's Formal Methods Group
 NASA Langley's AirSTAR Rapid Evaluation and Prototyping Group

© 2011 Galois, Inc.

Appendix

© 2011 Galois, Inc.

Monitoring By Sampling

Without inlining monitors, we must sample:

 Property (011)*

 False positive (monitor misses an fault):
• Values are 0111011 but sampling 011011

 False negative (monitor signals a fault that didn’t occur):
• Values are 011011 but sampling 0111011

 Observation: with fixed periodic schedule and shared clock
• False negatives impossible

• We don’t want to re-steer an unbroken system

• False positives possible, but requires constrained misbehavior

© 2011 Galois, Inc.

Pitot Data

© 2011 Galois, Inc.

 Gui

 --> Lustre

 Scheduling on ARINC 653

 Rushby: Liam(sp? flight) the control sampling/smoothing
data

 Overflow vars monitoring

 level C system level A monitor -- DO178B

© 2011 Galois, Inc.

Stream Semantics
(Append)

let x = varW64 in

 x .= [0, 1, 2] ++ x + 3 (Copilot)

f [0, 1, 2] (Haskell)

 where f :: [Word64] -> [Word64]
 f x = x ++ f (map (+3) x)

x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

x = [0, 1, 2]

 (+3)
 [3, 4, 5]

 (+3)
 [6, 7, 8]
 ...

all operators are
lifted in Copilot

© 2011 Galois, Inc.

Timed Semantics

Period: duration between discrete events
Phase: offsets into the period
Example:

 x: period 4 phase 1
 y: period 4 phase 3

Copilot ensures synchronization between streams
 Assuming synchronization of phases in distributed systems: no non-

faulty processor reaches the start of phase p+1 until every non-faulty
processor has started phase p

x1(); x2();

© 2011 Galois, Inc.

Timed Semantics

Period: duration between discrete events
Phase: offsets into the period
Example:

 x: period 4 phase 1
 y: period 4 phase 3

Copilot ensures synchronization between streams
 Assuming synchronization of phases in distributed systems: no non-

faulty processor reaches the start of phase p+1 until every non-faulty
processor has started phase p

x1(); x2();

© 2011 Galois, Inc.

Stream Semantics
(Append)

let x = varW64 in

 x .= [0, 1, 2] ++ x + 3 (Copilot)

f [0, 1, 2] (Haskell)

 where f :: [Word64] -> [Word64]
 f x = x ++ f (map (+3) x)

x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

x = [0, 1, 2]

 (+3)
 [3, 4, 5]

 (+3)
 [6, 7, 8]
 ...

all operators are
lifted in Copilot

© 2011 Galois, Inc.

Stream Semantics
(Drop)

x .= [0, 1, 2] ++ x + 3

y .= drop 2 x

x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

y = 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

© 2011 Galois, Inc.

Stream Semantics
(Drop)

x .= [0, 1, 2] ++ x + 3

y .= drop 2 x

x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

y = 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

© 2011 Galois, Inc.

Sample Code Generated
(Incomplete)

/* engine.sample__shutoff_2 */
static void __r6() {
 bool __0 = true;
 bool __1 = shutoff;
 if (__0) {
 }
 engine.tmpSampleVal__shutoff_2 = __1;
}

/* engine.updateOutput__trigger */
static void __r0() {
 bool __0 = true;
 bool __1 = engine.tmpSampleVal__shutoff_2;
 bool __2 = ! __1;
 float __3 = 2.3F;
 uint64_t __4 = 0ULL;
 uint64_t __5 = engine.outputIndex__temps;
 uint64_t __6 = __4 + __5;
 uint64_t __7 = 4ULL;
 uint64_t __8 = __6 % __7;
 float __9 = engine.prophVal__temps[__8];
 float __10 = __3 + __9;
 uint64_t __11 = 2ULL;
 uint64_t __12 = __11 + __5;
 uint64_t __13 = __12 % __7;
 float __14 = engine.prophVal__temps[__13];
 bool __15 = __10 < __14;
 bool __16 = __2 && __15;
 bool __17 = ! __16;
 if (__0) {
 }
 engine.outputVal__trigger = __17;
}

state-update function
for trigger stream

external variable
sample function

engine :: Streams
engine = do
 ...
 trigger = (var overTempRise)
 ==> (extB shutoff 2)

© 2011 Galois, Inc.

Copilot Language Restrictions

Design goal: make memory usage constant and “obvious” to
the programmer

 No anonymous streams
• Compiler doesn’t have to worry about sharing

 No lazily-computed values
• E.g. x .= [0] + x + 1

 y .= drop 2 x

 Other restrictions (see paper)

 Upshot: “WYSIWYG memory usage”
• Memory constrained by number of streams

• Memory for each stream is essentially the LHS of ++

• Doesn’t include stack variables

© 2011 Galois, Inc.

Timing Info & Expression Counts
Period Phase Exprs Rule
------ ----- ----- ----
 3 0 18 engine.updateOutput__trigger
 3 0 14 engine.updateOutput__overTempRise
 3 0 3 engine.update__temps
 3 1 7 engine.output__temps
 3 1 2 engine.sample__temp_1
 3 2 6 engine.incrUpdateIndex__temps
 3 2 2 engine.sample__shutoff_2

 52

Hierarchical Expression Count

 Total Local Rule
 ------ ------ ----
 52 0 engine
 6 6 incrUpdateIndex__temps
 7 7 output__temps
 2 2 sample__shutoff_2
 2 2 sample__temp_1
 14 14 updateOutput__overTempRise
 18 18 updateOutput__trigger
 3 3 update__temps

Generated engine.c and engine.h
Moving engine.c and engine.h to ./ ...
Calling the C compiler ...
gcc ./engine.c -o ./engine -Wall

Timing
info

Expression
count

helps with
WCET analysis

© 2011 Galois, Inc.

engine :: Streams
engine = do
 -- external vars
 let temp = extF "temp" 1
 let shutoff = extB "shutoff" 2
 -- Copilot vars
 let temps = varF "temps"
 let overTemp = varB "overTemp"
 let trigger = varB "trigger"

 temps .= [0, 0, 0] ++ temp
 overTemp .= drop 2 temps > 2.3 + temps
 trigger .= overTemp ==> hutoff

initial “don’t care”
values

Example Copilot Specification

“If the temperature rises more than 2.3 degrees within 2 seconds, then the engine
has been shut off.” (period == 1 sec)

phases to
sample in

© 2011 Galois, Inc.

Usage
 compile spec “c-name” [opts] baseOpts
 interpret spec rounds [opts] baseOpts
 test rounds [opts] baseOpts

• quickChecking the compiler/interpreter

 verify filepath int
• SAT solving on the generated C program

 help (commands and options)
 [spec] (parser)

 Opts (incomplete list):
• C trigger functions

• Ad-hoc C code (library included for writing this)

• Hardware clock

• Verbosity

• GCC options

© 2011 Galois, Inc.

Runtime Monitoring: What's New?

 Not new:
 One-out-of-two systems
 Error-checking codes
 Distributed fault-tolerance
 Built-in test

 New(er) ideas:
 Domain-specific languages for monitoring
 High-assurance monitors
 SW as a system componentSW as a system component

Decompose monitoring and controlling

Common source
of faults

© 2011 Galois, Inc.

X

 Types: Int & Word (8, 16, 32, 64), Float, Double
 Each stream has a unique inferred type:

 Casting

 Implicit casting is a type-error

Won't compile

 Explicit casting guarantees:
 signs never lost (no Int --> Word casts)
 No overflow (no cast to a smaller width)

Types

inferredtypes

let x = varW64 “x”
let y = varW32 “y”
x .= y

let x = varB “x”
let y = varI32 “y”
x .= [True] ++ not x
y .= cast x + 4

let x = varW64 “x”

x .= [0, 1] ++ x + 3

© 2011 Galois, Inc.

The Power of eDSLs

distCompile program node headers =
 compile (program node) node
 (setCode (Just (headers node))) baseOpts

Some problems for conventional compilers go away
 Don't have to add new language features (often)
 Don't need scripting languages

E.g., compiling distributed monitors is just another function:

compile program node
 (setCode (Just header)) baseOpts

Real-Time Runtime Monitoring

 Lee Pike | Galois, Inc. | leepike@galois.com
joint work with

Alwyn Goodloe NASA Langley Research Center

Robin Morisset École Normale Supérieure

Sebastian Niller National Institute of Aerospace

Nis Wegmann Technical University of Denmark

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

