~ Suzette Person
Research Computer Scientist, NA

2011 Annual Technical Meeting
May 10-12, 2011 ———
St. Louis, MO ’

(]
v

)
(&

D -

www.nasa.g

cution

Motivation

“Nothing endures but c%ange.”

Heraclitus, Greek
Philosopher
(c. 5335 BC - 475 BC)

C
O
e

©
=
e

O
=

Motivation

m Java Source Compare [[== < ﬁb % f@ A
[J] DSEfsrefLogicall.java [J] DSEfsrefLogicalz java
4 int old: 4 int old: ~
5 int[] data: 5 int[] data: 0
=] 5]
Tpublic int logicalWalue(int t){ 7 final int THRESZHOLD = 100; |
g if (! (currentTime - t == 1001 Spublic int logicalValue(int €] { | T
= return old: =] int elapsed = currentTime - t:
10 relse | 10 int val = 0O:
11 int wal = 0; 11 if (elapsed <« THRESHOLD) {
1z for (int i=0; i<data.length: i++){ 1z val = old; y
13 wval = wval + datali]: 13 telse! O
14 1 14 for (int i=0; i<data.length; i++){
15 old = wal:; 15 val = wal + datal[i]:
[16 return wval: 1l b N
17 3 17 old = wval; ==
|18} 18 3
191 19 return val: |
20 20} | 3

E

DISE

* Regression analysis technique focused
on version differences

» Leverages efficiencies of syntactic
analysis results to guide semantic
analysis

* |dentifies and characterizes the effects of
program changes

Overview of Presentation

» Background

» DISE Methodology

» Evaluation

* Conclusions and Future Work

Background

« Abstract Syntax Tree « Control Flow Graph

if (a>Db)
a=a+b; a>Db
If true/\false
- = a=a+b
2] o)1 1 l

Background

« Symbolic Execution

int m(int y){
1: if (y>0)
2: y++;

3: else

4: ¥y

5: returny;

{((Y>0), RETURN=Y+1),
- 1(Y>0), RETURN=Y-1)}

pp: 1
pc: true
vlyl: Y

/\

pp: 2
pc:Y>O0

vlyl: Y

pp: 5
pc:Y>O0
viy:Y+1

y

pp: pp +1
pc:Y>O0
viy:Y+1

V[RETURN]: Y +1

pp: 4
pc: (Y >0)
vlyl: Y

pp: 5
pc: (Y >0)
viyl:Y-1

pp:pp +1
pc: (Y > 0)
viyl:Y-1

VI[RETURN]: Y -1

DISE Methodology

=
| Compute
: Affected,, |

r
1 Directed Symbolic
: Execution

Affacted Path Conditiens
T L VOO L T
ke LR L T A
L T L VOO L T
\- Saoftware Haalth
Managameani Tasks

Fhase [

DISE Methodology

1 package precise; =
2
3 public class Examplefl {
4
1= public veoid test(int a, int b, int c, int d, int e} {
5] J/assignment of b is different
7 J/based on the branch taken by
8 after the evaluation of
9 S ola == @)
18 if(a == 8) {
11 b = (c+d);
12 } else {
13 b = e;
14 }
15 S /modified statement
16 | if(b ==18) { |
17 b = b+l;
18 }
19 }
20
21= public static void main(String[] args) {
22 Example®l ex = new ExampleBl();
23 ex.test(®, 0, B, 0, 0); |
24 } ||
25 Nl
(4]
[£! Problems | @ javadoc |[E, Declaration | 47 Search | €] Error Log | & History | Bl Cqg
No consoles to display at this time.

10

DISE Methodology

1 package precise;

2z

3 public class Examplel5 mod{
4

public void test {(int a, int b, int c, int d,
//modified statement

|b=b - = |
int & = {a + b);
int £ = (e - x=);

A/ conditional branch statement
// affected by the change
ifif{e + £} == {ctd)) |
e = f;
1
/4 no path conditions should be generated
A/ during this set of conditional branch
// statements
if {c == d} [
c = d+1;
} else if (c < d) |
c o= d+2;
} else if (c > d) |
o o= d+3;
1

[Y o S T e s W o R v Y TN Y - P T TR o s o o o R I AT

2 affected path conditions 11

int =)

{

! F
(6)20-20
%
H

Evaluation

* Implementation
— Custom application to compare ASTs

— Custom data and control dependence
analysis

— Extension to NASA Ames Java PathFinder
toolset

« Leverages Symbolic PathFinder extension

12

Evaluation

o Artifacts

— Three control applications written in Java
* Wheel Brake System (WBS)
* On-board Abort Executive (OAE)
* Altitude Switch (ASW)

— Manually created version history

13

Evaluation

« Research Questions

RQ1 (Cost): How does the cost of applying
DISE compare with full symbolic execution of
the changed method?

RQ2 (Efficiency): How does the number of path
conditions generated by DISE compare with
the number of path conditions generated by
full symbolic execution?

14

Evaluation

 Observations

— DISE incurs little overhead for all three
examples

— For most version differences, DISE
computed many fewer Path Conditions

— Factors affecting reductions
 Number of changes
 Location and nature of the change
* Program structure

15

Evaluation

* Limitations
— DISE performs an intra-procedural
dependence analysis

 Does not consider the effects of the return
value of a method

* May miss affected path conditions that
affect the global state

16

Conclusions and Future Work

* DISE combines efficiencies of lightweight
static analysis techniques with precision
of symbolic execution to explore and
characterize the parts of a program
impacted by changes

— General technique that does not require
analysis results to be carried forward

— Evaluation demonstrates effectiveness of
DISE relative to full symbolic execution

17

Conclusions and Future Work

 Extend DISE

— Inter-procedural analysis
— Leverage information from previous runs

» Evaluate on wider range of programs
» Explore other applications of DISE results

18

~ Suzette Person
Research Computer Scientist, NA

2011 Annual Technical Meeting
May 10-12, 2011 ———
St. Louis, MO ’

(]
v

)
(&

D -

www.nasa.g

cution

