Integrated Model Checking and Simulation
of NextGen Authority and Autonomy
(NextGenAA)

Ellen J. Bass, Karen Feigh, Elsa Gunter, John Rushby
Matthew Bolton, Dennis Griffith, William Mansky

A

s

[UNIVERSITY
JVIRGINIA

NNA10DE79C

NextGen systems are envisioned to be
composed of human and automated agents
interacting with dynamic flexibility in the
allocation of authority and autonomy.

Advancea Alrspdace

Air Traffic
Control

Traffic Control
Center
(ARTCC)

Terminal
Radar Control
Adapted from http://science.howstuffworks.com/ transport/flight/modern/air- http://www.aviationsystemsdivision.arc.nasa.gov/research/tactical/index.shtml

traffic-control2.htm

Analysis of concepts of
operation requires
methods for verifying and
validating range of roles
and responsibilities
potentially assignable to
human and automated
agents

— Automation

— Human behavior and
operational procedures

— Methods of collaboration
— Organization structures
— Policies and regulations
— Environment

http://www.boeing.com/news/frontiers/archive/2006/april/i_ca3.html

baytracon-east2.jpg

Agent-based simulation models such complexity

— Tradeoff between fidelity and the number of
simulation runs

Model checking techniques can verify safety
properties

— Component models are of sufficiently limited scope

— By analyzing simulation traces, model checking ensure
simulation’s design meets the intended analysis goals

Need:

Common representations for model components

Techniques for determining the set of analyses to
run

Long term objectives

*Unified agent modeling language

-Used by agent based simulation and model checking for autonomy
and authority

*Approach that allows formal model-checking techniques
to verify the bounds of human behavior and accountability
in a distributed human-automation systems

*Integration of agent based simulation and formal methods

-ldentify system level problems while providing insight on how to
correct the models used in each

*Integration of formal model-checking with agent-based
languages for modeling and simulating autonomy and
authority via model-based generation of scenarios

Current Approach

Link theorem proving, model checking and simulation through top
level XML description of agents, workflow and function allocation

Agents, workflow & function allocation (EoFmc)

Agent model
abstraction
& translation

Agent-based Model Theorem proving
simulation (work checking (Isabelle)

Model that Computes: (SAL)

WMC)

Detailed/concrete » Abstract

@ Atco OpPF @PMm

OPF&PM @ AlI3

precondition

.

N aCrange

Hegaing

y decomposition operator

A

P = [ATCoHeaangHeamFomPAians -
aCommunicae
Angcontm —— aSEew
[Heading Headng
g ™ (: 4 N ~
| aToggie acom | aToggie | | aToggle | aComCantm aToggle | o
ATCTak Heatling ATCOTak PATalk Hasing PldTaik
A 1 1 - l /N 1 ~ T = T -
ik com- ok ot com o
Y v Y Y Y Y
[I AW d
RARCOPrRSSOr RATCOTaK nARCOPrESS nPUFrESEOr NPT ROMErEESOr
: FrHeaaing IPiHeading - WTCoFeagng | PFHeading -
FeelsaseSwich ATCoSskected Crfieiease FelsaseSwich Plireading Fsiease it
ToTalk ‘ If.“lea’aw FromATE FIomATC l SwichToTalk ToTalk } FromATC rearFmAcis Frametd ToTalk
o
Y
repeatcondition | T iy sexsaeme
I I I - [e, ®
P = | completioncondition =
" IJ'*?-T ot
alseThe '..mrrﬂ?ye hFFEngage
o . and_par .
Y
REFPush hPFRGtatE ToHeadng REFPUI " amortar ss3yme
Hezding Saect cSayatieToReating Heaaing Haading Heading
Ry PFHEatingFImAT) SekECHnoD | \doow _
o SO
HOLD L "
i PFTRg NPT PRHaacing
Wiiow Poin=dAByPM -:L'ﬁadwwm Fromete
4

Decomposition operators

Operator Modality
Type Semantics Sequential — Parallel

and All of the sub-acts must execute and_seq and_par

or One or more of the sub-acts must or_seg or_par
execute

opror Zero or more of the sub-acts must opror_segq opior_par
execute

XOr Exactly one sub-act must execute xor —

ord All sub-acts must execute in the ord —
order they appear in

SVIC All sub-acts must be executed at — SVHC

the same time

Translation to SAL

startcondition
A completioncondition startcondition
reset

startcondition A precondition

A = completioncondition parentreset

endcondition . :
A repeatcondition Executing sndcondiiion Done Executing endeondition
A~ completioncondition A completioncondition

(a) (b)

(a) Execution state transition diagram for a generic activity. (b) Execution state transition diagram for a generic action.

Implicit transitions based on position in the task structure, and execution state of its
parent, sub-acts, and siblings:

startcondition: triggers the start of an activity or action defined in terms of the
execution states of its parent and siblings.

endcondition: ends the execution of an activity or action defined in terms of the
execution state of its sub-acts.

reset: resets an activity (have it return to the Ready execution state).

Transition Rules for Theorem Proving

51:3”:“[]] Valu‘r}m'.hdlrmv.::j-fl':' =uw

gys, t[] F (envs, lenv, (HumanAction(a, v), Ready))

{Iﬂﬁf]L (hd({envs) + {a — wl}@envs, lenv,

(HumanAction(a, v), Executing))

Fl

5'1:3”:“”] Vall'l’-'i‘t‘.'.hdl:'m‘f.?:l:-r':l =

sys, t[] F (enuvs, lenv, (LocVar(z, v), Ready))
—+ (envs, lenv + {x — w}, (LocVar(z, v), Executing))

EtEHfF[]:' Val!eznz'.ﬂdimﬁ'ﬁ:U'] = w
sys, t[]] E (envs, lenv, (Com(n, v, zy,..., T), Ready))
— (enve, E:-.fr".'i"r-‘ + ..., Tm u'}_ |
(Com(n,v.zy...., I,), Executing))

sys, t[] F (envs, lenv, (action, Executing))
— (envs, lenv, (aection, Done))

sys, t| F (enwvs, lenv, (action, state))
— (sys(envs)Qenvs, lenv, (action, state))

Operator performs operation, causing
output variable value to change from
a to w, and the action to transition to
the Executing state

Operator associates value v

with variable x (remembering or
making a note of a value)

Each of the local variables (belonging
to various humans) are updated with
the value of v

Any action that is Executing may
immediately transition to Done

System may at any time act by
updating the environment

Agent Modeling

e Simulation framework to simulate work in
complex, heterogeneous dynamic systems
(humans, physical systems, computer agents and
regulations, ...)

e Based on WMC (Work Model that Computes), a
work model that computes is a computer
simulation that includes:

— All aspects of the work model system (all behaviors
represented at all levels of abstraction)

— Interactions between multiple agents
— Interactions between agents and environment

WMC Constructs

Agent: entity that performs an action.
Action: work performed by an agent at one instance in time.
Resource: a specific state of the environment.

Environment: collection of resources available for interaction
with the agent.

Decision actions: process of selecting a course of action based
on the environmental context.

Temporal actions: actions initiated by the agent. It obtains a

specific resource from the environment and changes its
value.

Functions: describes how something may be achieved (in the

coding sense). It can call upon other functions or temporal
actions.

Abstraction Hierarchy

Functional purpose: Purposes for which the system was
designed as well as the external constraints on its
operation.

Abstract functions: The criteria that the work system
uses for measuring its progress towards the functional

purposes.

General functions: Basic functions that the system is
designed to achieve in order to accomplish the higher
functional purposes.

Temporal functions: Collections of temporal actions

Resources: Specific instantiations of environmental
variables

Formal Modeling and Analysis for
Interactive Hybrid Systems

Approach for very abstract modeling of hybrid systems

Relational approximations and automated analysis
using infinite BMC supported by an Satisfiability
Modulo Theories (SMT) solver

Propositional satisfiability (SAT) solving can be
generalized to SMT, which supports real numbers,
mathematical (i.e., unbounded) integers, and
uninterpreted functions.

Formal Modeling and Analysis for
Interactive Hybrid Systems

If anomalies are discovered, decide if due to approximations or
“real”
-When counterexamples are found, additional constraints
direct counterexamples toward plausible scenarios

Use this scenario to guide a limited search in a simulator to see if
a similar anomalous scenario can be created in high fidelity

Mental model of automation

* Frequential simplification causes rarely taken
transitions, or rarely encountered guards on
transitions, to be forgotten

* Inferential simplification causes transition
rules that are “similar” to one another to be
merged into a single prototypical rule

Based on Javaux 1998

A320 example

Several vertical modes and submodes
/S FPA (Flight Path Angle submode of Vertical Speed mode)
OP CLB (Climb submode of Open mode)
OP DES (Descent submode of Open mode)

Several autothrottle modes and submodes

SPD (Speed mode)- tries to maintain a specific airspeed set Flight
Control Unit (FCU)

Here in steep descent, FPA is prioritized over airspeed
e (Can exceed the speed set in the FCU

e |f exceeds the maximum safe speed, automated speed protection
switches vertical mode
— V/S FPA -> OP DES or OP CLB, which prioritize airspeed over vertical speed
e Based on “target altitude” set in the FCU

e FCU ALT > current altitude -> OP CLB; use max thrust and FPA to
maintain speed

Pilots

Nondeterministic choice among

e Extending or retracting the flaps (when the
mental model is descend or climb, respectively),

e Dialing a (hondeterministic) value into FCU ALT,
e Switching mental model to descend or climb, or
 Doing nothing

When mental model switches to descend or climb,
~CU mode is set to VS FPA and

Nondeterministic negative or positive flight path
angle, respectively, is dialed into FCU FPA

Aircraft

Uninterpreted functions (actually relations) describe the

dynamics of the airplane: airspeed and altitude

 These functions input current airplane airspeed,

altitude, engine thrust, and pitch angle and output sets
(modeled as predicates—i.e., functions with range type
BOOLEAN) of airspeed or altitude as appropriate

2 modes, depending on whether or not the flaps are
extended

Relational models

— Altitude must increase when pitch angle > 0 (new value
chosen nondeterministically from those values greater
than its current value)

Automation

Uninterpreted functions computes engine thrust and pitch angle

Inputs

e Pilot inputs (desired vertical mode, FCU altitude, FCU FPA, flap setting)
e Current aircraft state (airspeed and altitude),

Processing

e Determines actual vertical mode to be used (may differ from that desired by pilots
if a protection is being applied)

Outputs
* Applies control laws to determine thrust and pitch settings

Mode = VS FPA and airspeed > Max speed
Next mode:
If FCU altitude > altitude Then is OP CLB Else OP DES
Mode = VS FPA and airspeed <= Max speed
Pitch is governed by VS FPA pitch law
Mode = OP CLB
Pitch is governed by OP CLB pitch law

Constraints

Enforces suitable relations on

e Altitude and airspeed (interpretation of the airplane model)
e Thrust and pitch (interpretation of the automation)

e Automation surprise

e Separate model that observes the state of the system and sets
Boolean when it observes a violation of the relational constraint

OP DES and pitch >0

OP CLB and pitch< 0O

VS FPA and FCU FPA <=0 and pitch >0
VS FPA and FCU FPA >= 0 and pitch< 0
Pitch > 0 and altitude decreasing

Synchronous observer

Separate model that observes the state of the system and sets
Boolean when it observes a violation of the relational
constraint

Counter Example

Mode “Other”, IAS 200, ALT 3000 < FCU,
Flap ret., Mental Model Level, Pitch 0
Flying clean, dial descend, FCU FPA <0, FCU ALT 3200,
Mode “VS FPA”, IAS 201, ALT 2990 < FCU,
Flap ret., Mental Model Desc., Pitch <0
Flying clean, VS FPA, Extend flaps, Max Speed 180
Mode “VS FPA”, IAS 200, ALT 2988 < FCU,
Flap ext., Mental Model Desc., Pitch <0
Flying with flaps, mode reversion
Mode “OP CLB”, IAS 201, ALT 2988 <FCU,
Flap ext., Mental Model Desc., Pitch 0
Flaps, OP CLB
Mode “OP CLB”, IAS 200, ALT 2990 <FCU,
Flap ext., Mental Model Desc., Pitch>0

Next steps

Formal description of data abstractions used
in NextGen simulations

Example protection envelopes for authority
and autonomy for all major components

Transition semantics for core agent-based
language

Initial prototype of analysis toolset

Long term

*Formal analysis of simulation traces

*Model guided simulation

°Integrate agent based simulation, protection
envelope trace analyses, and model checking
with counterexample guided abstraction
refinement into a single coherent process

For more information

Bass, E.J., Feigh, K.,M., Gunter, E. & Rushby, J. (accepted). Formal modeling
and analysis for interactive hybrid systems. 4th International Workshop on
Formal Methods for Interactive Systems (FMIS), June 21, 2011, Limerick,
Ireland.

Bass, E.J., Bolton, M.L., Feigh, K., Griffith, D., Gunter, E., Mansky, W., & Rushby,
J. (under review). Toward a multi-method approach to formalizing human-
automation interaction and human-human communications. 2011 IEEE

International Conference on Systems, Man, and Cybernetics. October 9-12,
2011, Anchorage, Alaska.

Bolton, M.L., Siminiceanu, R.l., & Bass, E. J. (in press). A systematic approach
to model checking human-automation interaction using task-analytic
models. IEEE Transactions on Systems, Man, and Cybernetics, Part A :
Systems and Humans.

Pritchett A.R. Kim, S.Y., Kannan S. & K.M. Feigh (2011). Simulating situated
work. In 2011 IEEE Conference on Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA),

