Distributed Optimization for Aircraft Fleet Monitoring

Eric Chu, Dimitry Gorinevsky, and Stephen Boyd

May 10, 2011

Introduction

- aircraft fleet monitoring problem
 - individualized models for each aircraft and each flight
- distributed computing (optimization)

Problem statement

- massive amounts of Flight Operations Quality Assurance (FOQA) data is collected
- goal: use data to monitor performance of individual aircraft
 - reduce maintenance costs
 - detect fuel efficiency problems

Approach

- · learn multivariate models from the data
- use model to perform anomaly detection
- features of the approach:
 - handles flight-to-flight and tail-to-tail variability (fixed effects)
 - handles large-scale, distributed dataset
 - scalable through distributed computing

Problem setup

Model identification (regression)

• find model β_i and trend $a_i(t)$ such that

$$y_i(t) = \beta_i x_i(t) + a_i(t) + r_i(t) \quad \text{for all } i, t,$$

where $r_i(t)$ is model fit residual

• the models β_i , the trends $a_i(t)$, and the residuals $r_i(t)$, $t = 1, \ldots, T_i$, $i = 1, \ldots, N$, are found by solving

minimize
$$J^{\text{res}} + \kappa J^{\text{shift}} + \mu J^{\text{unit}}$$

Model Identification (regression)

• we choose

$$J^{\text{res}} = \sum_{i=1}^{N} \sum_{t=1}^{T_i} ||r_i(t)||_2^2$$

$$J^{\text{shift}} = \sum_{i=1}^{N} \sum_{t=2}^{T_i} ||a_i(t) - a_i(t-1)||_2^2$$

$$J^{\text{unit}} = \sum_{i=1}^{N} ||\beta_i - \bar{\beta}||_F^2$$

where $\|\cdot\|_F$ denotes the Frobenius norm ($\|A\|_F = (\sum_{i,j} A_{ij}^2)^{1/2}$)

One small hitch...

- example: FOQA data with regressors $x_i(t)$ of dimension n = 20and performance vector $y_i(t)$ of dimension m = 10, N = 100aircraft in the fleet, 500 flights per year over 5 years
- total number of measurements M^{tot} and variables N^{tot} :

$$M^{\text{tot}} = 2,500,000, \qquad N^{\text{tot}} = 2,520,000$$

solve time: approximately 500 years using standard matrix arithmetic

Distributed computing

Distributed computing

additional benefit: data privacy

Distributed algorithm

• normal equations have *block arrow* structure:

- blue blocks are easily invertible
- suggests we should solve for x_6 first, then x_1, \ldots, x_5 can be found in parallel

Distributed algorithm

• to solve for x_6 we must first compute the Schur complement matrix

- for second term, invert blocks of block diagonal matrix in parallel
- details can be found in *Scalable Statistical Monitoring of Fleet Data*, to appear in *Proceedings of IFAC World Congress*, 2011

Anomaly detection

- the trained model yields β_i^{\star} , $\bar{\beta}^{\star}$, $a_i^{\star}(t)$, and $r_i^{\star}(t)$
 - β_i^{\star} are individual models for each aircraft
 - $\bar{\beta}^{\star}$ is the average model for the fleet
 - $a_i^\star(t)$ are the trend in the offsets
 - $r_i^{\star}(t)$ are the model prediction residuals
- wish to detect three types of anomalies:
 - A1 performance anomaly: $r_i^{\star}(t)$ becomes 'large'
 - A2 performance shift: $a_i^{\star}(t)$ becomes 'large'
 - A3 anomalous unit: $\beta_i^{\star} \bar{\beta}^{\star}$ becomes 'large'

Anomaly detection

• measure 'size' of monitored signal by using

A1
$$T^{\text{res}} = (r_i^{\star}(t) - \bar{r}^{\star})^T (\Sigma^{\text{res}})^{-1} (r_i^{\star}(t) - \bar{r}^{\star})$$

A2 $T^{\text{shift}} = (a_i^{\star}(t) - \bar{a}^{\star})^T (\Sigma^{\text{shift}})^{-1} (a_i^{\star}(t) - \bar{a}^{\star})$
A3 $T^{\text{unit}} = (\beta_i^{\star} - \bar{\beta}^{\star})^T (\Sigma^{\text{unit}})^{-1} (\beta_i^{\star} - \bar{\beta}^{\star})$

- declare anomaly if any of these exceed threshold on Hotelling $T^2 \ {\rm chart}$

Example

- m = 1 performance measurement for an angle-of-attack channel, n = 4 input measurements, N = 200 aircraft, and $T_i = 5000$ for all i = 1, ..., N
- generate observations $y_i(t)$ via

$$y_i(t) = \beta_i x_i(t) + a_i(t) + r_i(t)$$

where $\beta_i,\ r_i(t),$ and $x_i(t)$ drawn from Gaussian distributions, $a_i(t)=0$ for all flights without faults

Example anomalies

- inject faults:
 - A1 a large value of $r_i(t)$
 - A2 ramp up $a_i(t)$ over successive flights of aircraft i
 - A3 a large value of $\beta_i \bar{\beta}$
- out of 200 aircraft, seed 2 faults of each kind

Example results

plot of $r_i(t)$ for last 5 flights

blue is ground truth; red is fitted curve

Example results

plot of $a_i(t)$ for all flights

blue is ground truth; red is fitted curve

Example results

 T^2 values for last flight (t = 5000) of all 200 aircraft

Conclusions

- fleet monitoring applied to FOQA data allows us to find:
 - abnormal flights
 - unusual performance trends
 - aircraft performing differently from the rest of the fleet
- demonstrated implementation for $1 \ {\rm million} \ {\rm flights}$ in simulation
 - sequential implementation on laptop takes minutes for 1 channel
- scalable computational performance achieved by distributed optimization

Next steps

- demonstrate for real FOQA data
- technology transition: new NASA SBIR project with Mitek Analytics
- more in Dimitry's talk on the architecture tomorrow

Questions

Piecewise constant offsets

- piecewise constant offsets corresponds to onset of a persistent anomaly
- we might use a different choice of J^{shift}

$$J^{\text{shift}} = \sum_{i=1}^{N} \sum_{t=2}^{T_i} \|a_i(t) - a_i(t-1)\|_2$$

- norm is not squared
- promotes sparsity in change of offset (*i.e.*, faults are rare)
- with this J^{shift} , no analytical solution

Distributed optimization

- basic idea from quadratic case suggests an iterative method with three steps:
- Step 1 solve a local problem
- Step 2 collect solutions and 'take average', then broadcast
- Step 3 update local solution
- the alternating direction method of multipliers (ADMM) provides an algorithm for distributing computation across data following above pattern¹
- additionally provides data privacy

¹S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. *Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers*. To appear in *Foundations and Trends in Machine Learning*, 2011.

Aircraft example with piecewise constant offsets

- same optimization problem, with different $J^{\rm shift}$
- m = n = 2, T = 100, N = 20
- seeded one anomalous aircraft (anomaly A3) and one offset (anomaly A2)
- solved problem using ADMM

Aircraft example

SVM example

NASA 2011 Annual Technical Meeting

SVM example

SVM example

NASA 2011 Annual Technical Meeting