Designing Human-Automation Interaction through Computational Modeling of Cognition and the Dynamic Flight Environment

Eric N. Johnson, Karen M. Feigh, and So Young Kim
11 May 2011
Outline

+ Introduction
 ▪ Modeling Human-Automation Interaction

+ Modeling Work
 ▪ Why work and what does it include

+ Making It Compute
 ▪ Changing a conceptual model into a computational model
Modeling Human-Automation Interaction

Many problems with human-automation interaction have their basis in the structure of the work they jointly execute:

- E.g. Workload spikes
- E.g. Incoherent function allocations
- E.g. Problems with timing of actions and information availability
Modeling Human-Automation Interaction

+ Work is purposeful activity on the environment
+ Work is situated in the environment
+ Can be viewed at the ‘team’ and the ‘individual’ level
Taskwork and Teamwork
Functional Requirements of the Work Model

A model of human-automation interaction ...

+ Should represent that work is purposeful activity on the environment

+ Should capture the taskwork as well as the teamwork

+ Should represent the realistic structure of the work

+ Should be manageable by the modeler
Work Model that Computes
Basic Building Blocks of a Work Model

From Functional Requirements
+ Action on the environment
+ Induced teamwork actions

+ Resource
 - Represents a tangible state of the environment, such as aircraft speed, aircraft altitude, current ATC clearance, etc.
 - The collective set of resources represents the current state of the environment

+ Action
 - A representation of an element of work performed by one agent at one time
Basic Building Blocks of a Work Model

Temporal Action: **Control Airspeed**
Agent: Automation
Next update: +0.02 seconds
Duration: 0.01 seconds

Temporal Action: **Update AP Target Speed**
Agent: Pilot
Next update: +60 seconds or after ATC
Duration: 2.0 seconds

Resource: **Airspeed**
Value: 195 knots
Last update: 1:28:31.04

Resource: **Target Airspeed**
Value: 200 knots
Last update: 1:27:15.06
Viewing Work at Multiple Levels of Abstraction

From Functional Requirements

+ Purposeful activity – clear relationship to work goals
+ Manageable by the modeler

+ Function
 - An aggregation of elements (actions) into useful higher level abstractions
Modeling Work at Multiple Levels of Abstraction

Mission

Goals:

- Goal: \textbf{Fly from A to B}
- Configuration: <set function allocations for this run>
- Go to:
 - P&V: Control Aircraft
 - P&V: Interact with Air Traffic System

Priorities

And

Values:

- Mission
- Goals:
- Priorities
- Values:

Generalized

Functions:

- Temporal Functions:
 - Temporal Function: \textbf{Control Aircraft}
 - Schedule Actions: \textbf{Control Airspeed, Control Heading, Control Vertical Speed, etc}

Temporal

Functions:

- Temporal Function: \textbf{Update Autopilot Targets}
 - \textbullet{} Decision Action: \textbf{Need to Set Autopilot Targets?}
 - if (need new speed to stay on path)
 - Schedule Actions: \textbf{Update Autopilot Target Speed}
 - else if (need new heading to stay on path)...

Abstract Function:

- \textbf{Control Aircraft}
 - \textbullet{} Decision Action: \textbf{Configuration of Control?} -> Pilot
 - If (function allocation 1 is 'Path Defined as Vector')
 - Configuration: Autopilot modes SPD, ALT, HDG
 - Else if (function allocation 2 is 'Pilot flies on F/D')
 - Configuration: Autopilot OFF, Configuration: F/D ON
 - Go to:
 - GF: Manage Aircraft Energy
 - GF: Manage Lateral Path

Abstract Function:

- \textbf{Interact with Air Traffic System}

Temporal Function:

- \textbf{Control Aircraft}
 - Schedule Actions: \textbf{Control Airspeed, Control Heading, Control Vertical Speed, etc}

General Function:

- \textbf{Communicate with ATC}

General Function:

- \textbf{Review / plan Trajectory}

Abstract Function:

- \textbf{Control Aircraft}
 - \textbullet{} Decision Action: \textbf{Configuration of Control?} -> Pilot
 - If (function allocation 1 is 'Path Defined as Vector')
 - Configuration: Autopilot modes SPD, ALT, HDG
 - Else if (function allocation 2 is 'Pilot flies on F/D')
 - Configuration: Autopilot OFF, Configuration: F/D ON
 - Go to:
 - TF: Control Aircraft, Update Autopilot Targets

General Function:

- \textbf{Manage Aircraft Energy}
 - \textbullet{} Decision Action: \textbf{How to Control Speed?} -> Pilot
 - If (autopilot mode ‘SPD’ && autopilot ON)
 - Schedule DA: Need to Set Autopilot Targets? -> Pilot
 - TA: Update Autopilot Target Speed -> Pilot
 - TA: Control Airspeed-> Autopilot
 - Else if (autopilot mode ‘SPD’ && F/D ON)
 - Schedule DA: Need to Set Autopilot Targets? -> Pilot
 - TA: Update Autopilot Target Speed -> Pilot
 - TA: Control Airspeed-> Pilot
 - Go to:
 - TF: Control Aircraft, Update Autopilot Targets

General Function:

- \textbf{Manage Lateral Path}
 - \textbullet{} Goal: \textbf{Fly from A to B}
 - Configuration: Function Allocation
 - Configuration: F/D On/Off
 - Configuration: Autopilot On/Off
 - Configuration: Autopilot Modes
Work in Context

From Functional Requirements

+ Responding to the environment
+ Realistic work structure
 ▪ Structured according to context
Work in Context

+ Strategies
 - Sets of actions achieving the same goal

+ Configuration Variables
 - A special class of resources representing current context to facilitate strategy selections

+ Decision Actions
 - A special class of actions that select strategies based on contextual factors (environmental, team design and within-agent)
Selecting Work Strategies in Context

Mission Goals:

Goal: **Fly from A to B**
Configuration: <set function allocations for this run>
Go to:
AF: Control Aircraft
AF: Interact with Air Traffic System

Priorities and Values:

◊ Decision Action: **Configuration of Control?->Pilot**
If (function allocation 1 is ‘Path Defined as Vector’)
 Configuration: Autopilot modes SPD, ALT, HDG
If (function allocation 2 is ‘Pilot flies on F/D’)
 Configuration: Autopilot OFF, Configuration: F/D ON

Generalized Functions:

◊ Decision Action: **How to Control Speed-> Pilot**
If (autopilot mode ‘SPD’ && autopilot ON)
 Schedule DA: Need to Set Autopilot Targets? -> Pilot
 TA: Update Autopilot Target Speed -> Pilot
 TA: Control Airspeed-> Autopilot
Else if (autopilot mode ‘SPD’ && F/D ON)
 Schedule DA: Need to Set Autopilot Targets? -> Pilot
 TA: Update Autopilot Target Speed -> Pilot
 TA: Control Airspeed-> Pilot

Temporal Functions:

Temporal Function: **Update Autopilot Targets**
◊ Decision Action: **Need to Set Autopilot Targets?**
if (need new speed to stay on path)
 Schedule Actions: **Update Autopilot Target Speed**
else if (need new heading to stay on path)…

Temporal Function: **Control Aircraft**
Schedule Actions: **Control Airspeed, Control Heading, Control Vertical Speed, etc**
WMC Constructs

+ **Agent**: entity that performs an action.
+ **Action**: work performed by an agent at one instance in time.
+ **Resource**: a specific state of the environment.
+ **Environment**: collection of resources available for interaction with the agent.
+ **Decision actions**: process of selecting a course of action based on the environmental context.
+ **Temporal actions**: actions initiated by the agent. It obtains a specific resource from the environment and changes its value.
+ **Functions**: describes how something may be achieved (in the coding sense). It can call upon other functions or temporal actions.
Simulation Engine
How to Make Work Compute

Sim Engine: Action List

At time = 0

DA: Configuration of Control?
Agent: Pilot
Next update: NOW

DA: How to Control Speed?
Agent: Pilot
Next update: NOW

TA: Control Vertical Speed
Agent: TBD
Next update: ??

DA: Need to Set Autopilot Targets?
Agent: TBD
Next update: ??

TA: Update Target Speed
Agent: TBD
Next update: ??
Agent Models that Manage the Work

Agent: Pilot
- Execute an action!
- Identify upcoming actions
- Update active actions
- Update delayed actions
- Update interrupted actions

Sim Engine: Action List

TA: Control Airspeed
Agent: Pilot
Next update: now
Duration: 1 second

TA: Update Aircraft Dynamics
Agent: Automation
Next update: +0.022 seconds
Duration: 0.01 seconds

TA: Control Altitude
Agent: Pilot
Next update: +0.4 seconds
Duration: 0.5 seconds

TA: Control Heading
Agent: Pilot
Next update: +1.1 seconds
Duration: 0.4 seconds

DA: On Localizer?
Agent: Pilot
Next update: +1s
Duration: 0.1s

Active Actions
- TA: Set Engine Throttle
 Last update: now
 Duration: 1 second
- DA: On Localizer?
 Last update: -0.05s
 Duration: 0.1s
- TA: Set Aileron
 Last update: -0.35s
 Duration: 0.4 seconds
- TA: Set Rudder
 Last update: -0.35s
 Duration: 0.5 seconds

Delayed Actions
- TA: Speak on Radio
 Pending availability

Interrupted Actions
- TA: Approach Briefing
 Interrupted by Localizer intercept
- TA: On Localizer?
 Last update: -0.05s
 Duration: 0.1s

Priority
Timing Considerations

+ Every action reports a next update time
 - May be ‘timestep’ of continuous dynamics
 - May be ‘event time’ of discrete dynamics
+ Action list sorted and executed by this value
+ Actions update asynchronously for efficiency
 - However, resource values synchronized as required

Fly Aircraft
Update Next Waypoint
Manage Flaps

Action A needs to ‘get’ resource values ‘set’ by other actions: Resynchronize
Resource “Quality of Service”

+ Each action specifies how ‘current’ each resource should be
 ▪ Similar to network “Quality of Service”

+ Some aspects of the environment may be allowed to be slightly temporally-disjoint
 ▪ Mirrors temporal differences in information in reality due to, for example, perceptual and communication delays

+ Can greatly reduce resynchronization requirements
 ▪ With commensurate increases in computational efficiency
Simulation Engine Block Diagram

Scenario

Initial Values

Script

Work Model

Agents
Strategies
Actions

Agent List
Action List
Resource List

Core

Models

HAI Metrics
Summary

+ Model Development
 - Work model that computes links a qualitative modeling technique to a computational simulation
 - Through a computational simulation, a work model can be verified

+ Current Use
 - To feed formal methods analysis of NextGen procedures
 - To analyze relative costs and benefits centralized v. decentralized air traffic control schemes
 - To measure function allocation metrics and human automation interaction for continuous descent approaches into LAX
Thank You!

Questions?
Objective: Model-based Metrics of HAI
Examining Human-Automation Interaction via the Work Model

+ Work model that computes provides a foundation to analyze the human-automation interaction
 - Model-based metrics can identify which aspect of human-automation interaction promotes the good or bad interaction

+ Metrics based upon literature review, noting common themes across several domains:
 - Automation Design
 - Human Factors
 - Cognitive Systems Engineering
 - Team Performance and Organizational Behavior
Perspectives of Human-Automation Interaction

+ **Technology-centered Perspective**
 - How do we design automated technology?
 - Engineering and computer science, focused on automatic control, intelligent systems

+ **Human-centered Perspective**
 - How can technology best support human performance?
 - Human-automation interaction interaction studies in human factors

+ **Team-oriented Perspective**
 - How can team members interact with each other seamlessly and efficiently?
 - Organizational behavior and management, team human factors

+ **Work-oriented Perspective**
 - How can the human-automated team improve work performance?
 - Cognitive systems engineering
Eight Categories of Issues I

1. Issues with Workload
 - Both normative taskload and the actual workload likely to result from issues with induced ‘teamwork’ actions, supervisory activities, and with human adaptation in response to their context

2. Issues with Coherency of Function Allocation
 - Can a reasonable, sensible description be made of the humans’ assigned tasks, or are their tasks piecemeal collections of things automation can’t do?

3. Issues with Responsibility and Authority
 - Mismatches between the assignment of functions and responsibilities to any team member, such as leaving the human responsible for the outcome of the functions of untrustworthy automation

4. Issues with Interruptive Automation
 - Automated functions that disrupt, interrupt or delay established operating procedures or work practices
Eight Categories of Issues II

5. Issues with Contextual Appropriateness of Machine Functions
 ▪ Poor knowledge or observability of whether immediate context mirrors the boundary conditions within which automation is intended to operate

6. Issues with Stability of Work Environment
 ▪ Disturbances within the environment and team design, including dynamic function (re-)allocations, require additional functions during transitions such as communication and information sampling to meet ‘teamwork’ requirements

7. Issues with Function Allocation vs. Cognitive Control of Humans
 ▪ Automation designs typically imply a pattern of human activity which may not hold as human team members pattern their cognitive activity to context (cognitive control)

8. Issues with Mission Performance
 ▪ Ultimate collective mission performance, in both nominal and off-nominal conditions
Corresponding Metrics

+ Workload
+ Coherency
+ Responsibility & Authority Mismatch
+ Interruption
+ Boundary Conditions of Machine Functions
+ Function Allocation vs. Cognitive Control of Humans
+ Stability of Work Environment
+ Mission Performance
Assessing Boundary Conditions of Machine Functions

+ Dynamic measure:
 - Flag when automation is operated outside its boundary conditions

+ E.g., autoflight commanded when it is physically impossible to make crossing restriction
Assessing Function Allocation vs. Cognitive Control of Humans

+ **Static measure:**
 - During model development, identify when specific cognitive control strategies are not supportive of function allocation assumptions implicit in automation/interface design

+ **Baseline of designing actions for each mode**
 - **CCM Opportunistic:**
 - Baseline, the taskwork that are basic to perform work
 - **CCM Tactical:**
 - Including the taskwork and the teamwork that are procedural such as verifying the system whether it functions as it is supposed to be.
 - **CCM Strategic:**
 - Including the taskwork and the teamwork that are actively engaged to monitor and to anticipate the environment and the future states of the operation.
Assessing Stability of Work Environment

- Dynamic measure:
 - Percentage of activities that human can foresee versus those triggered spontaneously

Agent: Pilot

Execute an action!

Identify upcoming actions

Update active actions

Update delayed actions

Update interrupted actions

Sim Engine: Action List

- TA: Push Speed Switch
 - Agent: Pilot
 - Next update: now
 - Duration: 1 second

- TA: Update Flight Control
 - Agent: Automation
 - Next update: +0.022 seconds
 - Duration: 0.01 seconds

- TA: Push Altitude Hold
 - Agent: Pilot
 - Next update: +0.4 seconds
 - Duration: 0.5 seconds

- DA: On Localizer?
 - Agent: Pilot
 - Next update: +1s
 - Duration: 0.1s

- TA: Push Heading Select
 - Agent: Pilot
 - Next update: +1.1 seconds
 - Duration: 0.4 seconds
Mission Performance

+ Dynamic measure: specific measurement depending on the mission goals

+ In the case study of descent arrival model
 - Mission goals are balancing on-time arrival and fuel efficiency while maintaining safety
 - Measurements are time-to-touch-down, fuel consumed, and any violation of flight regulations (e.g., crossing restrictions)