
National Aeronautics and Space Administration

www.nasa.gov

Automating the Generation of
Heterogeneous Aviation Safety
Cases

Ewen Denney
Senior Computer Scientist

2011 Annual Technical Meeting
May 10–12, 2011
St. Louis, MO

Safety Cases

Safety Case*
A structured argument, supported by a body of evidence

that provides a compelling, comprehensible and valid case
that a system is safe for a given application

in a given operating environment.

– Contrast with process-based approaches

– Safety is interpreted as the freedom from those hazards considered as presenting
unacceptable mishap risk.
• Uses a process for hazard identification and analysis
• Requires a process for defining/ characterizing “unacceptable risk”

– Safety cases
• Justify the measures taken for hazard mitigation
• Can be represented in various ways

– Graphically
– Structured text

2

* UK Ministry of Defence, Defence Standard 00-56, Part 1, Issue 4, June 2007.

Automation

• Safety cases are typically constructed manually
– Laborious
– Static
– Top-down
– Susceptible to confirmation bias

• We aim to automatically assemble (fragments of) safety cases from
– Engineering data
– Safety analyses
– Tool output

• Formal verification
• Simulation
• Testing

– Compliance with regulations

• Automation can support
– Bottom-up construction
– Tracing to large amounts of data
– More explicit reasoning, less gaps
– Iterative Development
– Queries and abstractions: multiple views

Heterogeneity

• A safety argument requires the integration of diverse sources of
information

Heterogeneity

• A safety argument requires the integration of diverse sources of
information
– Mathematical theory

Heterogeneity

• A safety argument requires the integration of diverse sources of
information
– Mathematical theory
– Flight test maneuvers*

Lateral 2-1-1 Manuever Response
Flight Test 050909-1, Athena GS111m INS/GPS Data

September 9, 2005

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1495 1497 1499 1501 1503 1505 1507 1509 1511 1513 1515

System Time (sec, from system boot)

Pi
tc

h/
R

ol
l A

ng
le

s
(r

ad
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Roll Angle (rad)
Pitch Angle (rad)
Aileron Input (-1 to +1)
Elevator (-1 to +1)

* Corey Ippolito, Design of an Autonomous Control System for a Small-Scale UAV.

Heterogeneity

• A safety argument requires the integration of diverse sources of
information
– Mathematical theory
– Flight test maneuvers
– Calibration experiments

Heterogeneity

• A safety argument requires the integration of diverse sources of
information
– Mathematical theory
– Flight test maneuvers
– Calibration experiments
– Manufacturer datasheets

Heterogeneity

• A safety argument requires the integration of diverse sources of
information
– Mathematical theory
– Flight test maneuvers
– Calibration experiments
– Manufacturer datasheets
– Flight operations procedures

Heterogeneity

• A safety argument requires the integration of diverse sources of
information
– Mathematical theory
– Flight test maneuvers
– Calibration experiments
– Manufacturer datasheets
– Flight operations procedures
– Software verification

Heterogeneity

• A safety argument requires the integration of diverse sources of
information
– Mathematical theory
– Flight test maneuvers
– Calibration experiments
– Manufacturer datasheets
– Flight operations procedures
– Software verification
– Systems and software safety analyses

PHA

FMEA

Heterogeneity

• A safety argument requires the integration of diverse sources of
information
– Mathematical theory
– Flight test maneuvers
– Calibration experiments
– Manufacturer datasheets
– Flight operations procedures
– Software verification
– Systems and software safety analyses
– Expert opinion

• A safety argument requires the integration of diverse sources of
information
– Mathematical theory
– Flight test maneuvers
– Calibration experiments
– Manufacturer datasheets
– Flight operations procedures
– Software verification
– Systems and software safety analyses
– Expert opinion

Challenge:
A methodology and framework that allows integrated reasoning about
disparate forms of evidence

Heterogeneity

Target System: Swift UAS

• Experimental Autonomous Vehicle Program
– Research vehicle program, Code TI, NASA Ames

• Electric motor, lithium batteries, high glide ratio, all
composite wing structure, steel/aluminum fuselage
frame

• Swift configuration
– Very low latency, computer controlled with multiple

onboard full-power CPUs
– UAS consists of ground system (GSC) and flight

system (UAV)

• Reflection architecture
– C and C++ component-based plug-and-play

infrastructure
– Real-time embedded avionics system architecture

• Commands in Reflection script, uploaded from
ground system, and interpreted by onboard VM

Operating System on Platform: Windows XP
Embedded

CGL (math/physics library)

Reflection Virtual Machine

UAV Modules Script Files

Safety Methodology

• Philosophy: Safety argumentation process driven by system safety process

• Safety argumentation process
– Argue safety over all identified hazards having unacceptable risk
– Automation and heterogeneity

• System safety process
– Hazard identification and risk analysis
– Safety requirements to eliminate risk or reduce to acceptable levels
– Iterative and successive refinement

• Phased development instead of isolated development
– Safety argumentation influences, and is influenced by, system development and safety analysis

Safety Methodology

• Hazard identification for the Swift UAS (Ongoing)
– Failure hazards
– Situations in the operating environment
– Interactions, ConOps

Fragment of identified hazards (PHL)

Safety Methodology

17

Fragment of Preliminary
Hazard Analysis

PHA is ongoing

Safety Methodology

18

Fragment of Preliminary
Hazard Analysis

PHA is ongoing

Software Verification Methodology

19

Design
(Mathematical
Specification)

VerifyImplementation
(Flight Software)

• Key verification component:
- Check implementation against

design

Software Verification Methodology

20

Design
(Mathematical
Specification)

VerifyImplementation
(Flight Software)

• Software requirements
- Arise, in part, from software safety

analysis
- e.g., requirements on software to

mitigate identified hazards
- Constrain flight software design

Software
Requirements

Software Verification Methodology

21

Design
(Mathematical
Specification)

VerifyImplementation
(Flight Software)

• System requirements
- Arise, in part, from system safety

analysis
- e.g., hazard mitigation measures

to be implemented by the system
- Flow down to software
- Express stakeholder needs

Software
Requirements

System
Requirements

Software Verification Methodology

22

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• Verification of flight software
- Specifically verification of the source

code
- Against mathematical specification

Software Verification Methodology

23

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• Verification of flight software
- Specifically verification of library

functions
- Testing against function

specifications

Function
Specifications

Test

Software Verification Methodology

24

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• Function specifications derived from
software requirements

Function
Specifications

Test

Software Verification Methodology

25

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• Design defined within the context of a
domain theory

Function
Specifications

Test

Domain Theory
(Axioms)

Software Verification Methodology

26

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• Verification of domain theory against
mathematical models (physics)

- Via testing.

Function
Specifications

Test

Domain Theory
(Axioms)

TestMathematical
Model

Software Verification Methodology

27

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• Verification of mathematical models /
specification via inspection

Function
Specifications

Test

Domain Theory
(Axioms)

TestMathematical
Model

Inspect

Inspect

Software Verification Methodology

28

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• The role of verification in the context
of safety analysis

Function
Specifications

Test

Domain Theory
(Axioms)

TestMathematical
Model

Inspect

Inspect

Safety analysis
(System and

Software)

Partially
define

Hazards

Identify
Mitigation

Software Verification Methodology

29

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• The role of verification in the context
of safety arguments

Function
Specifications

Test

Domain Theory
(Axioms)

TestMathematical
Model

Inspect

Inspect

Safety analysis
(System and

Software)

Partially
define

Hazards

Identify
Mitigation

Goals / sub-goals to
achieve in the
argument

Software Verification Methodology

30

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• The role of verification in the context
of safety arguments

Function
Specifications

Test

Domain Theory
(Axioms)

TestMathematical
Model

Inspect

Inspect

Safety analysis
(System and

Software)

Partially
define

Hazards

Identify
Mitigation

Goals / sub-goals to
achieve in the
argument

Main strategy - argue
for mitigation

Software Verification Methodology

31

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

• The role of verification in the context
of safety arguments

Function
Specifications

Test

Domain Theory
(Axioms)

TestMathematical
Model

Inspect

Inspect

Safety analysis
(System and

Software)

Partially
define

Hazards

Identify
Mitigation

Strategies,
Evidence,
Justification,
Assumptions

AutoCert

• Analyses source code using theorem proving
• Domain theory defined using math equations
• Generates chain of reasoning from assumptions to requirements
• Traces between code, documentation and V&V artifacts

32

Regulatory Framework

• NPR 7150.2A - NASA Software Engineering Requirements
• NPR 7123.1A - NASA Systems Engineering Processes and Requirements
• NPR 7900.3B - Aircraft Operations Management Manual
• NASA-GB-8719.13 - NASA Software Safety Guidebook
• NASA-STD-8719.13 - NASA Software Safety Standard
• NASA-STD-8739.8 - Software Assurance Standard
• NPR 8715.5A - NASA Range Flight Safety Program
• NPR 8715.3C - NASA General Safety Program Requirements
• NPR 8705.5A - Probabilistic Risk Assessment (PRA) Procedures for Safety and

Mission Success for NASA Programs and Projects
• APR 8705.1 - System Safety and Mission Assurance (NASA Ames)

A safety case should be aligned with the relevant regulations

 Justifies how evidence generated from compliance with regulations supports claims
about software and system safety.

Safety Argumentation

• Document safety cases using Goal structuring notation (GSN)*

* Tim Kelly. Arguing Safety: A Systematic Approach to Managing Safety Cases. PhD thesis, University of York, 1998

Safety Case Fragments – Swift UAS

• Options
– (1) Argue (mitigation / elimination of hazards) over phases of operation

• Take off, Climb, Cruise, Survey, Return-cruise, Descent, Land.
• Need to address safety of transitions between phases
+ Addressing hazards which change risk categories across phases

– (2) Argue (mitigation / elimination of hazards) over system architecture
• Airborne system (Swift UAV)

– Actuation
– Propulsion
– Avionics (HW / SW)
– Contingency management
– Power system
– Structure

• Ground system
• Communication infrastructure
• Need to address safety of interactions between systems
+ Maintainable and Modular argument

35

Safety Case Fragments – Swift UAS

• System-level safety
case fragment

– Using Option (1) for
exemplification

– Slice of overall safety
argument

36

Safety Case Fragments – Swift UAS

37

• Safety case fragment
for subsystem

– Tying system safety
goal to sub-system
goal to software
(safety) goal

Safety Case Fragments – Swift UAS

• Safety case fragment for software
– Autopilot is safety relevant, failsafe autopilot is safety critical (HazAn)
– Mitigation of autopilot / failsafe autopilot failure hazard Safe behavior
– Required correct behavior is also safe behavior
– Strategy used: argue correct behavior of autopilot / failsafe autopilot

38

39

• Safety case fragment for
software (cont.)

– Required correct behavior
is also safe behavior
Argument for correctness

Safety Case Fragments – Swift UAS

Safety Case Fragments – Swift UAS

• Safety case fragment for software
– Relation of software goal to external

non-formal information

40

Safety Case Fragments – Swift UAS

41

• Safety case fragment for
software subsystem

– Reasoning about implementation

Safety Case Fragments – Swift UAS

42

• Safety case fragment
for SW implementation

• Proof of
safety/correctness

Summary

• Safety case provides assurance for safety based on:
– Hazard identification and mitigation
– System/software boundary
– Tracing from high to low-level requirements
– Integration of formal and non-formal analyses
– Correspondence of formal analyses to case fragments
– Combination of top-down and bottom-up analyses

• Concentrate on airworthiness
– Later: operations, NAS

• Next:
– Allow control of “design choices” in safety case
– Mark-up language for evidence
– Include output of different tools
– Map to regulatory framework
– Incorporate tool qualification
– Queries and views
– Probabilistic reasoning

	Automating the Generation of Heterogeneous Aviation Safety Cases
	Safety Cases
	Automation
	Heterogeneity
	Heterogeneity
	Heterogeneity
	Heterogeneity
	Heterogeneity
	Heterogeneity
	Heterogeneity
	Heterogeneity
	Heterogeneity
	Heterogeneity
	Target System: Swift UAS
	Safety Methodology
	Safety Methodology
	Safety Methodology
	Safety Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	Software Verification Methodology
	AutoCert
	Regulatory Framework
	Safety Argumentation
	Safety Case Fragments – Swift UAS
	Safety Case Fragments – Swift UAS
	Safety Case Fragments – Swift UAS
	Safety Case Fragments – Swift UAS
	Safety Case Fragments – Swift UAS
	Safety Case Fragments – Swift UAS
	Safety Case Fragments – Swift UAS
	Safety Case Fragments – Swift UAS
	Summary

