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Safety Cases

Safety Case* 
A structured argument, supported by a body of evidence 

that provides a compelling, comprehensible and valid case 
that a system is safe for a given application 

in a given operating environment.

– Contrast with process-based approaches

– Safety is interpreted as the freedom from those hazards considered as presenting 
unacceptable mishap risk.
• Uses a process for hazard identification and analysis
• Requires a process for defining/ characterizing “unacceptable risk”

– Safety cases 
• Justify the measures taken for hazard mitigation
• Can be represented in various ways

– Graphically
– Structured text
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* UK Ministry of Defence, Defence Standard 00-56, Part 1, Issue 4, June 2007.



Automation

• Safety cases are typically constructed manually
– Laborious
– Static
– Top-down
– Susceptible to confirmation bias

• We aim to automatically assemble (fragments of) safety cases from
– Engineering data
– Safety analyses
– Tool output

• Formal verification
• Simulation
• Testing

– Compliance with regulations

• Automation can support
– Bottom-up construction
– Tracing to large amounts of data
– More explicit reasoning, less gaps
– Iterative Development
– Queries and abstractions: multiple views
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Heterogeneity

• A safety argument requires the integration of diverse sources of 
information
– Mathematical theory
– Flight test maneuvers*

Lateral 2-1-1 Manuever Response
Flight Test 050909-1, Athena GS111m INS/GPS Data

September 9, 2005
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* Corey Ippolito, Design of an Autonomous Control System for a Small-Scale UAV.
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• A safety argument requires the integration of diverse sources of 
information
– Mathematical theory
– Flight test maneuvers
– Calibration experiments
– Manufacturer datasheets
– Flight operations procedures
– Software verification
– Systems and software safety analyses
– Expert opinion

Challenge: 
A methodology and framework that allows integrated reasoning about 
disparate forms of evidence

Heterogeneity



Target System: Swift UAS

• Experimental Autonomous Vehicle Program
– Research vehicle program, Code TI, NASA Ames

• Electric motor, lithium batteries, high glide ratio, all 
composite wing structure, steel/aluminum fuselage 
frame

• Swift configuration
– Very low latency, computer controlled with multiple 

onboard full-power CPUs
– UAS consists of ground system (GSC) and flight 

system (UAV)

• Reflection architecture
– C and C++ component-based plug-and-play 

infrastructure
– Real-time embedded avionics system  architecture

• Commands in Reflection script, uploaded from 
ground system, and interpreted by onboard VM

Operating System on Platform: Windows XP 
Embedded

CGL (math/physics library)

Reflection Virtual Machine

UAV Modules Script Files



Safety Methodology

• Philosophy: Safety argumentation process driven by system safety process

• Safety argumentation process
– Argue safety over all identified hazards having unacceptable risk
– Automation and heterogeneity

• System safety process
– Hazard identification and risk analysis
– Safety requirements to eliminate risk or reduce to acceptable levels
– Iterative and successive refinement

• Phased development instead of isolated development
– Safety argumentation influences, and is influenced by, system development and safety analysis



Safety Methodology

• Hazard identification for the Swift UAS (Ongoing)
– Failure hazards
– Situations in the operating environment
– Interactions, ConOps

Fragment of identified hazards (PHL)



Safety Methodology
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Fragment of Preliminary 
Hazard Analysis

PHA is ongoing
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Software Verification Methodology
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Design 
(Mathematical 
Specification)

VerifyImplementation 
(Flight Software)

• Key verification component:
- Check implementation against 

design



Software Verification Methodology
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Design 
(Mathematical 
Specification)

VerifyImplementation 
(Flight Software)

• Software requirements
- Arise, in part, from software safety 

analysis 
- e.g., requirements on software to 

mitigate identified hazards
- Constrain flight software design

Software 
Requirements



Software Verification Methodology
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Design 
(Mathematical 
Specification)

VerifyImplementation 
(Flight Software)

• System requirements
- Arise, in part, from system safety 

analysis 
- e.g., hazard mitigation measures 

to be implemented by the system 
- Flow down to software
- Express stakeholder needs

Software 
Requirements

System 
Requirements



Software Verification Methodology

22

Implementation 
(Source Code)

Library Functions

Design 
(Mathematical 
Specification)

Software 
Requirements

System 
Requirements

Verify

Flight Software

• Verification of flight software
- Specifically verification of the source 

code 
- Against mathematical specification



Software Verification Methodology
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• Verification of flight software
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functions
- Testing against function 

specifications

Function 
Specifications

Test



Software Verification Methodology
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Flight Software

• Function specifications derived from 
software requirements

Function 
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Test



Software Verification Methodology
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Implementation 
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Flight Software

• Design defined within the context of a 
domain theory

Function 
Specifications

Test

Domain Theory 
(Axioms)



Software Verification Methodology
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Flight Software

• Verification of domain theory against 
mathematical models (physics)

- Via testing.
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Software Verification Methodology
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Software Verification Methodology
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Software Verification Methodology
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Software Verification Methodology
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AutoCert

• Analyses source code using theorem proving
• Domain theory defined using math equations
• Generates chain of reasoning from assumptions to requirements
• Traces between code, documentation and V&V artifacts

32



Regulatory Framework

• NPR 7150.2A - NASA Software Engineering Requirements
• NPR 7123.1A - NASA Systems Engineering Processes and Requirements
• NPR 7900.3B - Aircraft Operations Management Manual 
• NASA-GB-8719.13 - NASA Software Safety Guidebook
• NASA-STD-8719.13 - NASA Software Safety Standard
• NASA-STD-8739.8 - Software Assurance Standard 
• NPR 8715.5A - NASA Range Flight Safety Program
• NPR 8715.3C - NASA General Safety Program Requirements
• NPR 8705.5A - Probabilistic Risk Assessment (PRA) Procedures for Safety and 

Mission Success for NASA Programs and Projects
• APR 8705.1 - System Safety and Mission Assurance (NASA Ames)

A safety case should be aligned with the relevant regulations

 Justifies how evidence generated from compliance with regulations supports claims 
about software and system safety.



Safety Argumentation

• Document safety cases using Goal structuring notation (GSN)*

* Tim Kelly. Arguing Safety: A Systematic Approach to Managing Safety Cases. PhD thesis, University of York, 1998



Safety Case Fragments – Swift UAS

• Options
– (1) Argue (mitigation / elimination of hazards) over phases of operation

• Take off, Climb, Cruise, Survey, Return-cruise, Descent, Land. 
• Need to address safety of transitions between phases
+  Addressing hazards which change risk categories across phases

– (2) Argue (mitigation / elimination of hazards) over system architecture
• Airborne system (Swift UAV)

– Actuation
– Propulsion
– Avionics (HW / SW) 
– Contingency management 
– Power system
– Structure

• Ground system
• Communication infrastructure
• Need to address safety of interactions between systems
+  Maintainable and Modular argument
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Safety Case Fragments – Swift UAS

• System-level safety 
case fragment

– Using Option (1) for 
exemplification

– Slice of overall safety 
argument
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Safety Case Fragments – Swift UAS

37

• Safety case fragment 
for subsystem

– Tying system safety 
goal to sub-system 
goal to software 
(safety) goal



Safety Case Fragments – Swift UAS

• Safety case fragment for software
– Autopilot is safety relevant, failsafe autopilot is safety critical (HazAn)
– Mitigation of autopilot / failsafe autopilot failure hazard  Safe behavior
– Required correct behavior is also safe behavior
– Strategy used: argue correct behavior of autopilot / failsafe autopilot 
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• Safety case fragment for 
software (cont.)

– Required correct behavior 
is also safe behavior 
Argument for correctness

Safety Case Fragments – Swift UAS



Safety Case Fragments – Swift UAS

• Safety case fragment for software
– Relation of software goal to external 

non-formal information
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Safety Case Fragments – Swift UAS
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• Safety case fragment for 
software subsystem

– Reasoning about implementation 



Safety Case Fragments – Swift UAS
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• Safety case fragment 
for SW implementation

• Proof of 
safety/correctness



Summary

• Safety case provides assurance for safety based on:
– Hazard identification and mitigation
– System/software boundary
– Tracing from high to low-level requirements
– Integration of formal and non-formal analyses
– Correspondence of formal analyses to case fragments
– Combination of top-down and bottom-up analyses

• Concentrate on airworthiness
– Later: operations, NAS

• Next:
– Allow control of “design choices” in safety case
– Mark-up language for evidence
– Include output of different tools
– Map to regulatory framework
– Incorporate tool qualification
– Queries and views
– Probabilistic reasoning
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