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Data set is imbalanced, if

the classes are unequally

distributed

Class of interest (minority
class) is often much
infrequent or rarer

But, the cost of error on the
minority class can have a
bigger bite




FN%

S9AI}ISOd

A -~
,ﬁ
TP% <
TN
A
| II'L‘ ll(r | | -‘HI
20 40 G a0 100

Actual Actual
Negative | Positive
Predict TN FN
Negative
Predict FP TP

Positive




Actual Actual
Negative | Positive
Predict b0O0 b01
Negative
Predict b10 b1l
Positive

Actual Actual
Negative Positive
Predict TN FN
Negative
Predict FP TP
Positive

BN -~ (1_ I:)k)boo i Pkb01

B, =(1-F)b,+Rb,

~Costs




—

~ P o T B T ~ m A —~ — A e —

™ —

Dy, (K, X)L B ) > (1-R)by, + BBy, — By, (X)
(1- Pk)blo T Pkbll iy Pkbm(x)
1-F)

b,, (K, X) >

1. NPV=(1-PB )by, - (1-PR )by, + Pb, —Rby
=(1-P )b(TN)-(1-P.).C(FP)+P b(TP)-P,.C(FN)

Liu and Chawla, “"Benefit Scoring for Pricing,” KDD 2007
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Imagine a disease that has a prevalence
of 1 in a mllion people. I invent a test that
iIs 99% accurate. I am obviously excited.
But, when applied to a million, it returns
positive for 10,000 (remember, it is
99%accurate). Priors tell us otherwise.
There is one in a million infected --- 99%
accurate test is inaccurate 9,999 times
out of 10,0000.



Real-world has abundance of scenarios with
such imbalance in class distributions

Fraud detection

Fault detection and prediction

Failures

Disease prediction

Intrusion detection

Text categorization

Bioinformatics

Direct marketing

Terrorism

Physics simulations
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Risk of losing potentially important majority class examples,
that help establish the discriminating power
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Replicate the minority class examples to increase
their relevance
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But no new information is being added. Hurts the
generalization capacity.
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SMOTE: Synthetic Minority Over-sampling

Technique
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Conclusions from Sampling Work:
When faced with the problem of class
imbalance, SMOTE and undersampling, is
generally the preferred combination.
Using a wrapper can effectively discover the
potentially optimally amounts of sampling.

Effectively countering imbalance counters
misclassification costs issues

Chawla, et al., "SMOTE: Synthetic Minority Oversampling Technique, Journal of Artificial
Intelligence Research,

Cieslak, Chawla, “Start Globally, Optimize Locally, and Predict Globally: Improving Performance
on Imbalanced Data,” IEEE International Conference on Data Mining (ICDM), 2007

Chawla et al., "Automatically countering class imbalance and its empirical relationship to cost,
Data Mining and Knowledge Discovery Journal, 2009



Sampling approaches can be
computationally expensive

Outstanding Question: Can we improve
baseline classifier performance?



Traditional decision tree splitting criteria
are typically class skew sensitive

Almost always need some sampling or
threshold moving

Ensemble methods can potentially mitigate but
can be limited



A popular choice when combined with
sampling or moving threshold to counter

the problem of class imbalance
The leaf frequencies converted

o

probability estimates (Laplace or m-

estimate smoothing applied, ty
Suggested use is as a PET - Proba

nically)
Dility

Estimation Trees (unpruned, no-co
Laplace)

lapse, and
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(Q,W) classes of interest
N = number of samples

N. = number of samples in class i

N® = number of samples in L /R

NS = number of samples inclass [ is[ /R
split

N* NE NE NE
E = Z —N’L logzN’L+ Z ———log, —
ie(W,0) ie(W,0)




Hellinger Distance

- distance between probability measures
independent of the dominating parameters
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dy (P.Q) = [ (/P -\Q)?d2

dy (P.Q) =Y,, WP©) -JQ(®))’

Measures countable space ©
Ranges from 0 to V2
Symmetric: d,(P,Q)=d, (Q,P)
Lower bounds KL divergence
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classes of interest

N
N, = number of samples in class ;
N° = number of samplesin L/R
N> = number of samplesinclass j is[/R
" split
Nt Nt NS N/
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Hallingar

Information Gain
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+) _ P(x|-) P(x|+) | ~P(xI-)
H(_elllnger Information Gain
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Pi+/A) 00 Pi-

P(x

Class ratio +:- = 1:1
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Hellinger Information Gain
Distance

Class ratio +:- = 1:100
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Base Sampling
Gini
C4.5 (CART HDDT | C4.5 Gini HDDT
Avg Rank 5.61 7.42 2.50 | 4.00 6.18 3.79
Friedman
95% conf \ v V
 Single Hellinger distance decision trees compete

with and surpass sampling classifiers
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One sage sees all the data

Traditional: Use 100% of ,
training data to build a A
sage.

Ensemble: Randomize
training data to build ,
many voted experts é%@
(“bagging”). i a

Many experts see 2/3’s of the data

\ “h
=
4

B

Boosting: Emphasize
difficult instances in
future iterations

Experts outperform the sage!



lhnbalanced Data

Determined AUROC for each method on 38
unbalanced datasets.

Hellinger Distance (HD) AUROC Ranks

B T Bt SE SWT SWB SWBt
Average Rank |5.10(14.95 7.16 15.25 16.86 8.62 8.45
90% Confidence v \Y 4
95% Confidence Vv v '
999% Confidence Vv v 4
Information Gain (IG) AUROC Ranks
Bt T B SE SWT SWB SWBt
Average Rank |6.23|16.21 6.86 15.50 16.46 8.71 7.64
90% Confidence \Y4 \'4 '
959% Confidence 4 Y4 4
999%, Confidence Vv v Vv
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Which bagging wins?

HD+B IG+B
Dataset Wins 16 4
Rank Sum 163 27
Wilcoxon Winner at 95% Vv

Confirmed hypothesis: “Hellinger distance with bagging statistically significantly
performs best on unbalanced datasets.”
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Determined Accuracy for each method on 29 balanced datasets.

HD+Bt

HD+B

IG+Bt

IG+B

Average Rank
90% Confidence
959% Confidence
999 Confidence

2.16

3.03

2.12

3.03

Confirmed hypothesis: “Hellinger distance with bagging does not perform
statistically significantly worse on balanced datasets.”
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If you are learning on imbalanced data, use
bagged Hellinger Distance Decision Trees.

If you are learning on balanced data, you may
also use bagged Hellinger Distance Decision
Trees.

Cieslak and Chawla, “Learning Hellinger Distance Decision Trees for Imbalanced Data,”
European Conference on Machine Learning, 2008

Cieslak and Chawla, “Learning robust and skew insensitive decision trees,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), UNDER REVIEW.
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Optimal decisions, while they can maximize
performance in static environments, can result in
fragility for complex, uncertain, and rapidly
changing problems.



Often a disagreement between performance
evaluation criterion, (perhaps) the
learning objective function, and how the
model may be deployed.

Ideally, want models agnostic to
performance estimates.

Really, that rarely happens.



Manage the Tipping Point: Prepare for,
React to, Manage the Predictive

Uncertainties

The test sample is supposed to represent the population to be
encountered in the future. But in reality, it is usually a random sample
of the current population. High performance on the test sample does
not guarantee high performance on future samples, things do change.
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Can we anticipate the impact of potential
changes in distribution?

Can we gauge the impact of those to
different performance estimates?

Can we appropriately weigh and select
models for use?



Flirst, let us consider some comhn@h
Steps orf moael development

Development/Training
Data ‘ Develop Model(s)

Validation Data 4

!

Select Model

—— 3 Deploy
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LEE us change this {

| Development/Training
Data ‘ Develop Model(s)

Inject
Scenarios
Validation Data

1 Monitor
Select Model ‘ Deploy

Famewori.
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Sample Selection Bias
Missing Not At Random (MNAR)

Missing At Random (MAR)
Shifting Class Priors
Covariate Shift

Noise
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Incoming
Data

Generate
Probabilities

Learn

Classifiers . KW Test

Do the

[ | ]& probabilities
Continue come from
different

populations?

Yes
Check for bias
KS/Hellinger




Learn classifiers and generate probabilities on
both validation and testing sets

Use Kruskal-Wallis on these populations

Zg n.(f ~7)’
2., IZ] 0-7)

Where g is the number of groups, n; is the size
of group /, r;; is the rank of observation j in
group /

K=(N-1)



Learn classifiers and generate probabilities on
both validation and testing sets

Use Kruskal-Wallis on these populations

Zg n.(f ~7)’
2., IZ] 0-7)

Where g is the number of groups, n; is the size
of group /, r;; is the rank of observation j in
group /

K=(N-1)



If the Kruskal-Wallis results indicate bias,
then examine the feature space:
The Kolmogorov-Smirnov Test
quantifies the value gap, no distributional
assumption

The Hellinger Distance measures the
distributional divergence



Evaluating and Monitoring
Models

You can download from

Cieslak, Chawla, “"Detecting Fractures in Classifier Performance,” IEEE International
Conference on Data Mining (ICDM), 2007

Cieslak, Chawla, “"A Framework for Monitoring Classifiers' Performance: When and Why
Failure Occurs?,” Knowledge and Information Systems Journal, 2008

Raeder, Chawla, "Model Monitor: Evaluating, Comparing and Monitoring Models,” Journal
of Machine Learning Research, 2009


research/m2/m2/m2.jar
http://www.nd.edu/~dial

Let neither measurement without theory
Nor theory without measurement dominate
Your mind but rather contemplate

A two-way interaction between the two

Which will your thought processes stimulate

To attain syntheses beyond a rational
expectation!

Contributed by A. Zellner.



Chawla et al., Workshop on Learning from
Imbalanced Datasets, International Conference
on Machine Learning, 2003

Chawla et al., Special Issue on Learning from
Izn(;gglanced Datasets, SIGKDD Explorations,

Chawla et al., Workshop on Mining when rare
events matter more, and errors have costs,
PAKDD 2009

Chawla, Tutorial: Mining When Classes are

Imbalanced, Rare Events Matter More, and Errors
Have Costs Attached, STAM, 2009



nd software

ww.nd.edu/~dial
la@nd.edu

Nitesh Chawla, ASIAS
Symposium, July 27, 2009

—



http://www.nd.edu/~dial
mailto:nchawla@nd.edu

