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Modeling The Biosphere Has Important

Scientific and Public Policy Implications
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Modeling The Biosphere Has Important

Scientific and Public Policy Implications

Forests are a major source for the transfer of mass and
energy from land to the atmosphere
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Modeling The Biosphere Has Important

Scientific and Public Policy Implications

Also, you can see them from space!
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Modeling The Biosphere Has Important

Scientific and Public Policy Implications

How well can we estimate forest parameters from
remote-sensed data?
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Statistical Inference Provides a Methodology to Anal-

yse Models and Provide Well-Calibrated Estimates

Analyse a computer model of light interac-
tion with forest canopies.
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Statistical Inference Provides a Methodology to Anal-

yse Models and Provide Well-Calibrated Estimates
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Emulate the computer
model using a Gaussian
Process.
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Statistical Inference Provides a Methodology to Anal-

yse Models and Provide Well-Calibrated Estimates
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The Gaussian
Process model
is amenable to
analysis.
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Radiative Transfer Models Simulate the Interaction of

Light With Forest Canopies

CANopy MODel
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Radiative Transfer Models Simulate the Interaction of

Light With Forest Canopies

CANopy MODel

Leaf Area Index (LAI)
Leaf Angle Distribution
Soil Reflectance

LEAF MODel

Chlorophyll
Water Fraction
Protein
Lignin/Cellulose
Thickness
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Global Sensitivity Analysis Reveals Important Char-

acteristics of the Computer Model

Decompose the output of the LCM as

y = f(v) = E(Y ) +

d
∑

i=1

zi(vi) +
∑

i<j

zi,j(vi, vj) + . . .

+ z1,2,...,d(v1, v2, . . . , vd)
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Global Sensitivity Analysis Reveals Important Char-

acteristics of the Computer Model

Decompose the output of the LCM as

y = f(v) = E(Y ) +

d
∑

i=1

zi(vi) +
∑

i<j

zi,j(vi, vj) + . . .

+ z1,2,...,d(v1, v2, . . . , vd)

Global Mean E(Y ) =

∫

vj ,j=1...d

f(v)dH(v)

Main Effects
zi(vi) = E(Y |vi) − E(Y )

=

∫

v
−i

f(v)dH(v−i|vi) − E(Y )
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Sensitivity Indices - The Expected Reduction in Out-

put Uncertainty if an Input Was Known Exactly

Variances of the components of the output decomposition

Vi = Var{E(Y | vi)} = E
[

(E(Y | vi))
2
]

− (E(Y ))2.
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Sensitivity Indices - The Expected Reduction in Out-

put Uncertainty if an Input Was Known Exactly

Variances of the components of the output decomposition

Vi = Var{E(Y | vi)} = E
[

(E(Y | vi))
2
]

− (E(Y ))2.

Normalize to give the Sensitivity Indices

Si =
Vi

Var(Y )

How much of the variance of the output is due to input i.

If I learn the value of input i exactly, by how much is the
variance of the output reduced?
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There are Two Strategies for Computing the Integrals

Involved in the Main Effects and Sensitivity Indices

Monte Carlo approximation of the analytic integral.

Robin Morris. AISRP PI Meeting. October 2009 – p. 7/24
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Involved in the Main Effects and Sensitivity Indices

Monte Carlo approximation of the analytic integral.

Analytic integration of an approximation to the function.
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There are Two Strategies for Computing the Integrals

Involved in the Main Effects and Sensitivity Indices

Monte Carlo approximation of the analytic integral.

Analytic integration of an approximation to the function.

Trade-off depends on the dimensionality.
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Use a Gaussian Process Emulator in Place of the

LCM

A GP is a distribution over functions.
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Use a Gaussian Process Emulator in Place of the

LCM

A GP is a distribution over functions.

Specified by the
mean function E(f(v))

= µ

covariance function Cov(f(v), f(v′))

= σ−2 exp
(

−
∑k

l=1
φl|vl − v′l|

α
)
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Use a Gaussian Process Emulator in Place of the

LCM

A GP is a distribution over functions.

Specified by the
mean function E(f(v))

= µ

covariance function Cov(f(v), f(v′))

= σ−2 exp
(

−
∑k

l=1
φl|vl − v′l|

α
)

Joint distribution of any finite set of points is multivariate
Gaussian.

Parameters (µ, σ,φ) learned using maximum likelihood from
a set of training runs of the LCM.
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Taking Into Account the Uncertainty Introduced by

the GP Approximation

Recall Main Effects zi(vi) = E(Y |vi) − E(Y )
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Taking Into Account the Uncertainty Introduced by

the GP Approximation

Recall Main Effects zi(vi) = E(Y |vi) − E(Y )

We must include the uncertainty introduced by using the
GP emulator for y = f(v)

E∗ {E(Y )} = µ̂ + T TC−1(y − µ̂1n)

E∗ {} is expectation wrt GP
T – n × 1 vector with elements
∏d

ℓ=1

{

∫ bℓ

aℓ
exp(−φl|vℓ − xiℓ|

α)(bℓ − aℓ)
−1dvℓ

}
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Taking Into Account the Uncertainty Introduced by

the GP Approximation

Recall Main Effects zi(vi) = E(Y |vi) − E(Y )

We must include the uncertainty introduced by using the
GP emulator for y = f(v)

E∗ {E(Y )} = µ̂ + T TC−1(y − µ̂1n)

E∗ {} is expectation wrt GP
T – n × 1 vector with elements
∏d

ℓ=1

{

∫ bℓ

aℓ
exp(−φl|vℓ − xiℓ|

α)(bℓ − aℓ)
−1dvℓ

}

E∗ {E(Y | uj)} can be similarly derived

This gives point estimates for the main effects.
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Main Effects for the Leaf-Canopy Model
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Main Effects for the Leaf-Canopy Model
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LAI: affects NIR (bands 7,8); opposite effect in visible (band 5)
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Main Effects for the Leaf-Canopy Model
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Lignin: affects SWIR (bands 4,5); surprising to domain scientists
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Estimating the Uncertainty of the Main Effects

Take Var∗ {} – variances wrt GP predictive distribution as a
measure of this uncertainty

Var∗ {E(Y | uj)} = E∗
{

(E(Y | uj))
2
}

− (E∗ {E(Y | uj)})
2.
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Estimating the Uncertainty of the Main Effects

Take Var∗ {} – variances wrt GP predictive distribution as a
measure of this uncertainty

Var∗ {E(Y | uj)} = E∗
{

(E(Y | uj))
2
}

− (E∗ {E(Y | uj)})
2.

For our modeling choices (constant mean; exponential or
squared exponential correlation function; uniform priors on
the inputs) this can be computed analytically.
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Main Effects With Uncertainties
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The uncertainties due to the GP approximation are small.
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Sensitivity Indices Under the GP Approximation

Sj =
Var(E(Y | uj))

Var(Y )
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Sj =
Var(E(Y | uj))

Var(Y )
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Sensitivity Indices Under the GP Approximation

Sj =
Var(E(Y | uj))

Var(Y )

Cannot compute E∗ {Sj} analytically.

Approximate by
E∗ {Var(E(Y | uj))}

E∗ {Var(Y )}
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Sensitivity Indices for the Leaf-Canopy Model

band; wavelength (nm)

1 2 3 4 5 6 7 8

input 469 555 1240 1640 2130 667 748 870

LAI 0.05 0.01 0.43 0.16 0.04 0.28 0.41 0.48

CHL 0.80 0.83 0.00 0.00 0.00 0.56 0.08 0.00

Water 0.00 0.00 0.01 0.12 0.14 0.00 0.00 0.00

Protein 0.00 0.00 0.01 0.02 0.02 0.00 0.02 0.02

Lignin 0.00 0.00 0.19 0.36 0.53 0.00 0.13 0.16

Thick. 0.02 0.05 0.14 0.07 0.05 0.02 0.24 0.18

Soil 0.00 0.00 0.08 0.06 0.03 0.01 0.03 0.06

Total 0.88 0.90 0.86 0.80 0.81 0.87 0.90 0.90
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Wait a Minute. Aren’t You Missing Something Here?

What about the uncertainty due to the estimated GP
parameters?
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Wait a Minute. Aren’t You Missing Something Here?

What about the uncertainty due to the estimated GP
parameters?

The GP parameters are estimated from a 250 point Latin
Hypercube sampling of the input space.

There is significant uncertainty in the estimated GP
parameters.
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Bayesian Estimation using MCMC to Include GP Pa-

rameter Uncertainty

Generate samples of the GP parameters

ψ = (θ, µ, σ2,φ)

where θ are the predicted outputs at the training points.
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Bayesian Estimation using MCMC to Include GP Pa-

rameter Uncertainty

Generate samples of the GP parameters

ψ = (θ, µ, σ2,φ)

where θ are the predicted outputs at the training points.

Posterior predictive distribution for ỹ = f(v) is

p(ỹ | D) =

∫∫

N(ỹ | θ̃, J)N(θ̃ | m(v), S(v))p(ψ | D)dψdθ̃
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Bayesian Estimation using MCMC to Include GP Pa-

rameter Uncertainty

Generate samples of the GP parameters

ψ = (θ, µ, σ2,φ)

where θ are the predicted outputs at the training points.

Posterior predictive distribution for ỹ = f(v) is

p(ỹ | D) =

∫∫

N(ỹ | θ̃, J)N(θ̃ | m(v), S(v))p(ψ | D)dψdθ̃

Can use these to estimate the full distribution of the main
effects and the sensitivity indices.
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Median and 95% Probability Bands of the Posterior

Distributions of the Main Effects

Uncertainties are larger, especially at the extreme values of the inputs.
Basic behaviour is the same.
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Distributions of the Sensitivity Indices
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Large values of Total Sensitivity Indices when first order SI is close to zero
indicate important interaction effects.
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Distributions of the Sensitivity Indices
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Large values of Total Sensitivity Indices when first order SI is close to zero
indicate important interaction effects.
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Reducing the Uncertainty on the Inputs

Better priors on the inputs from analysis of the LOPEX
(Leaf Optical Properties EXperiment) database.
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Reducing the Uncertainty on the Inputs

band; wavelength (nm)

1 2 3 4 5 6 7 8

input 469 555 1240 1640 2130 667 748 870

uniform priors

LAI 0.05 0.02 0.50 0.30 0.01 0.23 0.42 0.53

CHL 0.74 0.80 0.00 0.00 0.00 0.59 0.09 0.00

Water 0.00 0.00 0.01 0.09 0.16 0.00 0.00 0.00

LOPEX priors

LAI 0.38 0.44 0.49 0.29 0.09 0.63 0.45 0.55

CHL 0.39 0.32 0.00 0.00 0.00 0.15 0.05 0.00

Water 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
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Current and Future Work

Inverting the LCM to produce LAI estimates from MODIS
data, using the GP as a fast approximation to the LCM.
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Studying the effect of including field data as priors on the
model inputs when performing inversion.
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Current and Future Work

Inverting the LCM to produce LAI estimates from MODIS
data, using the GP as a fast approximation to the LCM.

Studying the effect of including field data as priors on the
model inputs when performing inversion.

Calibrating the LCM by estimating a bias function from
areas where there are both field data and remote sensed
data.
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Conclusions

Developed main effects and sensitivity indices for the LCM
RTM

Extended the framework to account for uncertainty in the
estimated GP emulator.

Provides insight for model improvement.

Results provided new information to the domain scientists.

Extending this work to validation and inversion.
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Conclusions

Developed main effects and sensitivity indices for the LCM
RTM

Extended the framework to account for uncertainty in the
estimated GP emulator.

Provides insight for model improvement.

Results provided new information to the domain scientists.

Extending this work to validation and inversion.

Questions?
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