

Open Architecture for Data Mining and PHM

Dimitry Gorinevsky, Eric Chu, and Azary Smotrich, Mitek Analytics LLC

COTR Robert Mah, NASA ARC

2011 Annual Technical Meeting May 10–12, 2011 St. Louis, MO

May 2011 www.nasa.gov

NNA08BC21C • NASA Architecture NRA

Aircraft Data Monitoring

Data Mining Functions

- Data exploration
 - Model structure selection
 - Off line, is not a part of deployed monitoring function

Model training

- Multivariate regression

Data exploitation

- Anomaly detection
- Fault isolation (diagnostics)
- Predictive trending

V&V for Data Mining and PHM

Outline

- Background and past effort – Where did we come from?
- Completed effort
 - Where are we now?
- On-going effort
 - What are we going currently?
- Extensions
 - What are the follow-on steps?

Data Mining Demo

- Java EE SOA software: Openalytics
- Functions from Stanford NRA
 - Regression modeling of aircraft dynamics
 - Anomaly detection from residuals MSPC
 - Detail in E. Chu, D. Gorinevsky, and S. Boyd, AIAA Infotech@Aerospace, 2010
- FOQA data from NASA FLTz simulator
 - Cruise flight segment

- Many flights with varying conditions May 2011 NNA08BC21C • NASA Architecture NRA

Openalytics SOA

Integrated Demonstration

- Historical database with 25,000 flights
- Openalytics:
 - GlassFish server
 - JSF Web GUI
- 100Gb db4o database
- Model trained in a few minutes
- Seeded faults detected well

/HM Data Mining Analy	tical Model Tra	ining and Anomal	/ Detection Tool - N	lozilla Firefox	_ 🗆 🗙				
<u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>E</u>	ookmarks <u>T</u> ool	ls <u>H</u> elp							
💽• C 🗙 🏠 [http://localho	st:8080/IVHMDM-we	b/faces/lvhmDm.jsp	😭 👻 🚼 - Google	P				
/HM Data Mining Analytical									
VHM Data Mining Analytical Model Training and Anomaly Detection Tool									
Analytical Model Training	Anomaly Detection	on 🛛 Flight Data Impor	Database Statistics	Display Flight Data					
Flight Data									
O Abnormal flights O Nor	mal flights 🔘 Unpr	ocessed flights 🔘 Unu	sed training set						
Range start 12/31/2010	III	Range stop 12/31	2011 (2011	Tail number					
		Find	Flights						
Flights With Detected Anor	nalies (3)								
		(Ť.							
Flight Date 🙀	Flight Number 🙀	Tail Number 🔩 Descri	ption		tų.				
Mon Jan 03 00:00:00 PST 2011	WA010	N88664 C:\IVHI \\007_F	/testbed\IVHMDM_demo\(AULTY_WITH_TURB_mit)	data\014202 ek_states.out					
Mon Jan 03 00:00:00 PST 2011	VVA014	N00428 C:\\VHI \\020_F	/testbed\IVHMDM_demo\(AULTY_WITH_TURB_mit)	data\014317 ek_states.out					
Mon Jan 03 00:00:00 PST 2011	VVA016	N92856 C:\IVHI \008_F	/testbed\IVHMDM_demo\(AULTY_WITH_TURB_mit	data\014546 ek_states.out					
	🔷 Abr	normal flight data s	earch produced 3 re	esult(s).					
Check table above for details.									
)				
9									

Outline

- Background and past effort
- Completed effort
- On-going effort
- Extensions

Verification for FOQA Data

- NASA has FOQA data sets
 - Could implement regression-based algorithms
 - But the data access is restricted...
- Software integration and verificiation
 - Have to be done off site
 - Require testing with realistic data
- Solution: simulator for FOQA data

Simulator scope

- Generate realistic FOQA data sets
- Base aerodynamic configuration

 Cruise, end of climb, beginning of descent
- Quasi-steady flight
 - Smooth accelerations, decelerations, turns
- Linearized performance models
 Of the aircraft and of the engines
- Models are calibrated on real data

Airframe Dynamics

• Airframe dynamics: near-steady flight

 $m(a-g) = F_{aero} + F_{thrust}$

• Propulsion thrust

 $F_{thrust} = c_{e,L} \rho_{air} N_{1,L} + c_{e,R} \rho_{air} N_{1,R} - c_{e,M} M$

 $-N_{1,L}$, $N_{1,R}$ are engine fan RPMs, M is Mach number

• Aerodynamic forces

$$F_{aero} = qC_{a,0} + qC_{a,1}\alpha + qC_{a,2}u_1 + \dots + qC_{a,n+1}u_n$$

- $q = \frac{1}{2}\rho_{air}V^2$ is dynamic pressure
- α is AOA

 $-u_1, \ldots, u_n$ are control surface positions

Airframe Attitude

• Pitch dynamics

 $Ia_{pitch} = C_{p,m}(m - m_0) + qC_{p,1}\alpha + qC_{p,0} + qC_{p,2}u_{stab} + qC_{p,2}u_{elev}$

- Roll dynamics
 - $Ia_{roll} = qC_{r,1}r_{roll} + qC_{r,2}u_{aileron} + qC_{r,2}u_{rudder}$
- Yaw: coordinated turn

Actuator Allocation

- Symmetric allocation
 - Left elevator = Right elevator
 - Left aileron = -Right aileron
- Stabilizer = $c \cdot \text{Elevator}$
- Slats, flaps, spoilers stats
 - are not deployed

Regression Model

- Linear regression models
 - $y_j = B_j x_j + v_j$
 - $-y_j$ performance variables
 - $-x_i$ regressors
 - $-B_{j}$ regression parameters
 - $-v_i$ noise
- LS model fit (training)
 For one channel at a time

A319 Data Set

- The model is trained on A319 FOQA data set at NASA ARC
 - The data provided by an airline partner to NASA under a confidentiality agreement
 - The model completely depersonalizes flight data
 - Modeling of aircraft performance has no relation to airline operation.

Airframe Regression Model

scaled data

	RHO X N1 SUM	DELTA M	DELTA M X A- LAT	DELTA M X LONG	DELTA M X NORM	DELTA M X ROLL	AOA X PDYN	ROLL RATE X PDYN	DIFF AIL X PDYN	SUM ELEV X PDYN	STABILI ZER X PDYN	RUDDE R X PDYN	DYN PRESS
LAT ACCEL			-1.0000 ± .0000						-0.0483 ± .0133			-0.1023 ± .0282	-0.0386 ± .0348
LONG ACCEL	0.3927 ± .0258			-1.0000 ± .0000									-0.1854 ± .0328
NORM ACCEL					-1.0000 ± .0000		3.0586 ± .3441						2.1192 ± .5006
ROLL ACCEL						-0.2000 ± .0000		-0.0032 ± .0007	-0.0061 ± .0013			0.0018 ± .0008	0.0003 ± .0007
AOA X PDYN		0.8926 ± .1133								-1.0604 ± .1954	-0.7143 ± .0980		0.7017 ± .1021

Flight		STABILIZER X PDYN	RUDDER X PDYN	DYN PRESS	ONES
	AILR SUM				-0.5152 ± 0.1467
Surrace	N1 DIFF				0.0000 ± 0.0001
Allocation	ELEV DIFF				-0.0090 ± 0.0741
Allocation	SUM ELEV x PDYN	0.1403 ± 0.0476		-0.1209 ± 0.0835	

April 2011

Engine Regression Model

• Linearized performance model of the engine

scaled data

	AOA	N1	TOTAL AIR TEMP	VARB BLD VALVE	VARB STATR VANE	МАСН	TOTAL AIR PRESS	ONES
N2	0.0332 ± 0.0023	0.2841 ± 0.0029	0.0163 ± 0.0011			0.0258 ± 0.0023	0.0109 ± 0.0011	0.3053 ± 0.0032
EGT LPT	-0.0083 ±	1.4024 ±	0.3544 ±	-0.0505 ±	-0.3537 ±	0.0687 ±	-0.0184 ±	-1.2769 ±
TEMP(IAE)	0.0359	0.1641	0.0161	0.0074	0.0220	0.0503	0.0189	0.1388
T3 (HPC EXIT	-0.1221 ±	1.2868 ±	0.4152 ±	-0.0261 ±	-0.4742 ±	0.0852 ±	-0.0166 ±	-1.1573 ±
TEMP)	0.0289	0.1330	0.0114	0.0056	0.0201	0.0334	0.0135	0.0987
FUEL MASS	-0.6324 ±	1.8989 ±	0.1574 ±	-0.0586 ±	-0.3534 ±	-0.5733 ±	0.1633 ±	-0.8648 ± 0.1450
FLOW RATE	0.0507	0.1916	0.0259	0.0084	0.0241	0.0829	0.0271	

Regression Fit: Fuel Rate, EGT

Simulator Development

- Coded in Matlab
 - Almost completed
 - Stand-alone executable
- Uses the regression models
- Will generate most/all FOQA data channels

Flight Plan

– Turn: 3-4

- Turn rate \rightarrow roll

Overall Simulator Logic

- Flight Plan
 - → Accelerations (Kinematics)
 - → Airframe Attitude (Coordinated Flight)
 - → Flight Actuators (Regression)
 - → Engine Dynamics (Regression)
 - → Mass Change (Integration)
- Triangular model structure

Simulator Verification

• Accelerations

- From flight plan (kinematics)

• Airframe attitude

- Coordinated flight

- Flight actuators, engine dynamics
 - Regression models
 - Were shown earlier

Accelerations

Airframe Attitude

NNA08BC21C • NASA Architecture NRA

Simulator Performance

- Most/all FOQA data channels
- 10-20% accurate in its range
- Generates 5000 s of data in 1 s on a PC
 - -40Mb csv file
 - Writing to disk adds time

Outline

- Background and past effort
- Completed effort
- On-going effort
- Extensions

Fleet Data Monitoring

- Many flights of many aircraft
- Fixed effects
 - Tail-to-tail model variation
 - Flight-to-flight variation, e.g., loading
- Eric Chu's talk on Wednesday

Distributed Data Mining

- New NASA SBIR project
- Aircraft fleet data
 - Distributed data sets
 - Fixed effect models
 - Distributed computing
- Model-based monitoring
 - Train model
 - Use it for monitoring

Conclusions

- Formulated technology transition path for ground monitoring of FOQA data
 - Model training (data mining)
 - Monitoring (data exploitation)
- Demonstrated SOA software framework
- Working on distributed computing software for scalable aircraft fleet monitoring

Backup Slides