

Flying Fatigue Laboratory for Reducing Uncertainty in Predicted Remaining Useful Life Alexandra Coppe, Raphael T. Haftka, Nam-Ho Kim (Univ. of Florida), Gang Li, Fuh-Gwo Yuan (North Carolina State University)

Fatigue Crack Growth and Measurement Model

- Through-the-thickness crack of a fuselage panel (AI 7075-T651)
- Paris model with repeated pressurization cycles

- Crack size after N cycles a_N^{true}
- Simulated SHM data: random readings from a model that includes unknown (but single valued) bias b
- and random noise from equipment and environment, $v \sim U(-V,V)$ mm
- Measured crack size after *N* cycles:

Bayesian Updating for Parameter Distribution

 Updating damage growth parameter distribution using Bayes' theorem and SHM data:

 $L_{test}(m) f_{init}(m)$ $f_{updt}(\boldsymbol{m}) = 0$ $L_{test}(m)f_{init}(m)dm$

- f_{init} : assumed (or prior) probability density function, initial distribution from the range of test data: $f_{init}(m) \sim U(3.3, 4.3)$
- L_{test} : likelihood function, likelihood to have the observed crack growth between two inspections for a given *m* (includes uncertainty in noise and applied pressure)

- Progressive reduction of uncertainty in damage growth parameter

Limitations on Bayesian Updating

- Although bias is deterministic, it is unknown to the user (uncertain)
- Bayesian updating ignored the bias in likelihood calculation because it does not affect much the RUL estimation
- Bayesian updating gives satisfactory results but it did not handle well uncertainty in bias

6000 <u>9</u> 5000 ⊾

4000 3000

