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Road MapRoad Mappp
• Space/Earth Science and Data Mining

• Distributed Data Mining
– P2P Mining of Virtual Observatory Data
– Collaborative Tagging and P2P Text Classifier gg g

Learning

• Future Work



Future of Astronomy and Earth Science Future of Astronomy and Earth Science 
i ii iData Processing EnvironmentsData Processing Environments

• High throughput data streamsHigh throughput data streams
• Multiple data sources

di ib d i• Heterogeneous distributed computing 
environment

• Increasing number of users; scientific 
communities forming peer-to-peer networks 

• Increasing demand for faster response time



MMultipleultiple Data SourcesData Sources



Distributed and PeerDistributed and Peer--toto--Peer Peer 
Computing EnvironmentComputing Environment

Distributed computing environments 
(community of users)

High performance grid computing



GALAXY ZOO: How CommunityGALAXY ZOO: How Community--based based 
Science is Shaping up….Science is Shaping up….Science is Shaping up….Science is Shaping up….



How Do We Analyze Data in Distributed How Do We Analyze Data in Distributed 
Environment?Environment?Environment?Environment?

• Multiple data tables and streams
• Computing Environment:

– High performance computing g p p g
– Cluster of relatively low-end desktop machines

• Objective• Objective
– Quickly sifting through distributed data and 

identify potential matchesidentify potential matches



Project ObjectivesProject Objectives

• Objectives: Develop distributed and P2P data mining 
algorithms and systemsalgorithms and systems

• Enabling Technical Innovations:g
Algorithmic Innovations:
– Distributed classifier learning 
– Distributed eigenstate monitoringDistributed eigenstate monitoring
– Distributed outlier detection

Systems Innovations:
G l Sk d PADMINI S t– Google-Sky powered PADMINI System

– Web-based user interface
– Plug-n-play backend distributed data mining modules



Architecture of PADMINIArchitecture of PADMINI
P2P Distributed Computing 

Environment

PADMINI PADMINI 
WebWeb--basedbased

PADMINIPADMINI
WebWeb--based based 
InterfaceInterface

DDM ServerDDM Server

SDSSSDSSSDSSSDSS

2MASS STSCI 
Text  Data



PeerPeer--toto--Peer Text Classification & Peer Text Classification & 
Classifier LearningClassifier LearningClassifier LearningClassifier Learning

• Large Astronomy Text Repositories
• Collaborative text labeling
• P2P classifier learning from distributed labeled data



Algorithmic ApproachAlgorithmic Approach

• Linear classifier construction
• Distributed data:

– Each site has a collection of data tuplesEach site has a collection of data tuples
• Can be posed as linear programming problem

Mi i i i th– Minimizing the error
• Distributed linear programming
• Distributed simplex algorithm



Communication Cost vs. Network SizeCommunication Cost vs. Network Size
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• Number of nodes in the network is varied from 10 to 500 nodes
• Number of variables in a constraint equation is kept constant at 35



PeerPeer--toto--Peer Virtual Observatory Data Peer Virtual Observatory Data 
MonitoringMonitoringMonitoringMonitoring

• Detecting changes in streams of VO data 
using P2P data mining algorithmsg g g

• P2P Eigenstate monitoring algorithms• P2P Eigenstate monitoring algorithms



The The Fundamental Plane of Elliptical Fundamental Plane of Elliptical 
GalaxiesGalaxiesGalaxiesGalaxies

• The fundamental plane for 
elliptical galaxies tracks the 
correlation between the 
ff ti dieffective radius, average 

surface brightness, and 
central velocity dispersioncentral velocity dispersion.

• With this correlation, one 
can determine the distance tocan determine the distance to 
galaxies, which is a critical 
but difficult task in 
astronomy.



Our Prior ObservationOur Prior Observation
• Produced a 156,000 cross-matched galaxy dataset with 

attributes from SDSS and 2MASS 
SDSS: velocity dispersion Pertrosian I band angular– SDSS:  velocity dispersion, Pertrosian I band angular 
effective radius, redshift

– 2MASS:  K band mean surface brightness

• Partitioned into bins w.r.t. local galaxy density ρ
Estimated ρ using Delaunay tessellation methods– Estimated ρ using Delaunay tessellation methods

– The local density around a selected galaxy is inversely 
proportional to the local volume that contains only that one 

l d b th D l t ll tigalaxy – measured by the Delaunay tessellation

• Estimated the fundamental plane parameters for each p p
bin (e.g., variance captured in the first two principal 
components, as f(ρ) )
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Future WorkFuture Work

• Finish building the research prototype of 
PADMINIPADMINI

• Include more algorithmic support for P2P dataInclude more algorithmic support for P2P data 
mining

• Continue to interact with STSCI

• Extensive testing and evaluation.

• Transfer the technology
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