Plans for an Aeroelastic Prediction Workshop -Discussion Session

Jennifer Heeg, Josef Ballmann, Kumar Bhatia, Eric Blades, Alexander Boucke, Pawel Chwalowski, Guido Dietz, Earl Dowell, Jennifer Florance, Thorsten Hansen, Mori Mani, Dimitri Mavriplis, Boyd Perry, Markus Ritter, David Schuster, Marilyn Smith, Paul Taylor, Brent Whiting, and Carol Wieseman

AeroelasticPW@gmail.com

https://c3.ndc.nasa.gov/dashlink/projects/47/

15th International Forum on Aeroelasticity & Structural Dynamics June 26–30, 2011 Paris

Some Topics for discussion

- Selection rationale
- Flow / aeroelastic phenomena of interest
 - Potential other data sets
 - Future AePW
- Omputational resource requirements
- Anticipated end product of AePW
- Preliminary test case results & lessons learned
- Analyst data resources available

Case 1 Selection Rationale Rectangular Supercritical Wing (RSW)

- Cases chosen to focus on the steady and unsteady aerodynamic solutions and their variation.
- Mach 0.825 generates transonic conditions with a terminating shock; highest Mach number with forced transition
- Steady Data: Two static angles of attack chosen
 - α = 2.0° generates a moderate-strength shock with some potential for shock-separated flow; corresponding forced oscillation data exists.
 - $\alpha = 4.0^{\circ}$ generates strong shock with greater potential for shock-separated flow .
- Unsteady Data: Two forced oscillation frequencies chosen to evaluate methods abilities to distinguish frequency effects.
 - Non-zero mean AoA introduces a wing loading bias for which codeto-code comparisons can be accomplished.

Case 2 Selection Rationale Benchmark Supercritical Wing (BSCW)

Ighly nonlinear aerodynamic phenomena.

- Known shock-separated transient flow.
- Relatively obscure data that serves as a virtually blind test case for the methods.
- Better data detail and insight than for RSW.
 - Statistical and time-history data are available for comparison.
 - Good possibilities for retesting for future workshops.

Case 3 Selection Rationale HIRENASD Wing

- Aircraft-representative geometry, rather than "unit problem"
- Initial test for fully coupled aeroelastic analysis.
- Steady cases demonstrate prediction capabilities for static aeroelastic problems.
- Dynamic cases demonstrate structural dynamics coupling with unsteady aerodynamics techniques.
 - Relatively weak aeroelastic coupling make it a good entry-level aeroelastic test case.

Technical challenges

We need the equivalent slide for AePW: <u>Flow phenomena:</u> Transonic flow: terminal shock strength varying Attached flow Shock-Separated flow Shock-boundary layer interaction Buffeting flow Vortical flow <u>Aeroelastic challenges:</u>

Aerodynamic Viewpoin

- Nonlinear Aeroelastic Issues of interest:Characterized by nonlinear flow phenomenon:
 - Transient and oscillating shocks, separated flow, vortex impingement and bursting.
 - Complex interactions of above.
 - Buffet, Limit Cycle Oscillations.
 - Pushing into aeroacoustic response, aerocontrol, and aero-propulsion interactions.

Prediction challenges:

- Resolution of fine flow details (accuracy and modeling)
- Large models/grids and long computation times.

Numerical dissipation (algorithms)

Aeroelastic Viewpoint

Aeroelastic Issues of interest

- Characterized by nonlinear flow & structural phenomenon:
 - Transient and oscillating shocks, separated flow, vortex impingement and bursting
 - Nonlinear structural stiffness and damping
 - Complex interactions of above.
- Prediction challenges:
 - Scientifically identifying the sources of discrepancies between the experimental data and the computational results
 - Scientifically identifying dominant nonlinearities
 - Develop models that greatly reduce computational time with no essential loss in accuracy
 - Enable finer solution resolution and direct Navier Stokes computations without empirical turbulence models

AePW Workshop Timing Evaluation

• Considerations:

- Computer variations
 - Benchmark computer using TauBench (see <u>http://www.public.iastate.edu/~zjw/hiocfd/Guideline.html</u>)
 - Could also be used to combine components run on different machines (i.e. structural solver vs CFD)
- Simulation duration may vary from one contribution to another
 - Normalize to a standard duration (1sec)
 - Not always representative for multiple problems because of different structural/fluid frequencies, but would provide a baseline for a particular problem
- Cost Metric = (CPU-time for simulation)/(TauBench)/(simulation time)
- Grid/time step size impacts accuracy and timing. Migrate toward plot of "cost" vs "accuracy metric" to reflect balance. Not sure what "accuracy metric" should be. May depend on if grids are supplied and time step specified.

TauBench

- The scalable Benchmark ТаuВелсн is a pseudo benchmark.
- Emulates the run-time behavior of the TAU FLOW SOLVER with respect to memory footprint and floating point performance.
- In order to accomplish this, a run time profile of the TAU FLOW SOLVER was generated.
- After analyzing the profile, the actual loop structure of the most cpu consuming kernels was duplicated.
- TAUBENCH can predict the performance of the flowsolver not only with respect to machine properties like memory bandwidth or cache latencies, but also with respect to the quality of compilers.

Anticipated End Products of AePW1: The questions we are asking

- For the "relatively simple cases" under consideration:
 - How good are our methods?
 - What are the major sources of the uncertainties/ errors/ variations?
 - Do we need to improve upon this?
 - Can we improve upon this?
- What are the next building blocks that should be considered?

Anticipated End Products of AePW1

- Update to the state-of-the-art assessment of computational aeroelasticity
- Assessment of data sets used
- Identification of desirable characteristics of a good validation experimental data set
- Identification of a good validation computational exercise for aeroelastic solutions
- Address the path forward
 - Next test cases
 - Future experiments
 - Methods improvements

Preliminary test case results & lessons learned

Preliminary RSW Analysis Update Mach = 0.825, AoA = 2deg, FUN3D vs. Steady Experimental Data

No splitter plate! And viscous tunnel wall!

0.2

0.6

0.4

x/c

0.8

0.2

0.4

x/c

0.6

0.8

.

0.2

0.4

x/c

0.6

0.8

Preliminary BSCW Analysis Update Unsteady Analysis Mach = 0.85, AoA = 5deg, f = 10Hz, A = 1deg T = 1/10 sec split into 128 time steps and run for 512 steps with 25 subiterations, For animation data was collected at each time step

mach 1.4 1.27 1.14 1.01 0.88 0.75 0.62 ср 1.00 0.49 0.60 0.36 0.20 0.23 -0.20 0.1 -0.60 -1.00

HIRENASD Wing Analysis

- EZNSS (Elastic Zonal Navier-Stokes Solver) CFD Code by the Israeli CFD Center
 - Chimera overset grid
 - SA & k- ω TNT/SST turbulence models.
 - HLLC 3rd order MUSCL Scheme.
 - Full viscous scheme.

Technion - Israel Institute of Technology הטכניון – מכון טכנולוגי לישראל

Flow Analysis

- Rigid Configuration at:
 - Mach 0.8
 - angle of attack 1.5°, -1.34°
 - Reynolds number 23 million
- Medium-size mesh (712 million grid points)

AoA (deg)	CL	CD	СМу
1.5	0.34918	0.01397	-0.54943
-1.34	-0.00205	0.00506	-0.00827

Technion - Israel Institute of Technology הטכניון – מכון טכנולוגי לישראל

Mode Spline

Structural modes were mapped from finiteelement grid to the CFD surface grid

Challenges

- Create and analyze coarse and fine meshes
- Perform aeroelastic analyses

Technion - Israel Institute of Technology הטכניון – מכון טכנולוגי לישראל

Gridding progress of unstructured HIRENASD meshes

M. Ritter

German Aerospace Centre - Göttingen

Overview of the coarse, medium, and fine unstructured HIRENASD meshes

- → Semispherical farfield shape
- → Radius ca. 100c_{ref} (100 x 0.3445m)

Overview of the coarse, medium, and fine unstructured HIRENASD meshes

- **7** Coarse:
 - → 5676008 Total Nodes
 - **7** 14378129 Total Elements
 - → Boundary layer cells:
 - → 34 prism layers
 - → Stretching factor 1.28

- **→** Medium:
 - → 16052763 Total Nodes
 - **7** 38871412 Total Elements
 - → Boundary layer cells:
 - → 40 prism layers
 - → Stretching factor 1.25

- → Fine:
 - 7 46393528 Total Nodes
 - 7 104678223 Total Elements
 - → Boundary layer cells:
 - → 45 prism layers
 - → Stretching factor 1.23

Overview of the coarse, medium, and fine unstructured HIRENASD meshes

→ Estimation of the turbulent boundary layer height (cf. e.g. Anderson):

$$\delta_{te} = \frac{0.371 * chord}{Re^{0.2}}$$

 \neg Worst case: Re = 7 million

$$\delta_{te} = \frac{0.371 * 0.3445m}{700000^{0.2}} \approx 0.00546m$$

- Entire boundary layer should be included in prism layer due to high dissipation of tetrahedra cells
- Therefore the coarse mesh needs a comparatively high stretching ratio
 (1.28) to avoid large mesh size

- → Thermodynamic conditions and integral values for test case 1:
 - → Ma = 0.8, Re = 23.5 million, AoA = -1.34°
 - → No fluid-structure coupling!

Gas constant (NITROGEN)	296.8	J/kg*K
Reynolds number	23483300	-
Prandtl number	0.72	-
Sutherland constant	111	К
Sutherland reference viscosity	1.766e-05	Pa*s
Sutherland reference temperature	300.55	К
Reference density	3.628	kg/m³
Reference temperature	182.776	К
Reference pressure	196816.890	Ра
Reference Mach number	0.8	-
Reference velocity:	220.440	m/s

	Coarse grid 5.7 million nodes	Medium grid 16 million nodes	
C_L	0.033519	0.033239	
C_{D}	0.009154	0.009181	
C _m	0.027913	0.027526	
C _m	-0.042686	-0.042472	
C _m z	0.00427	0.004355	
Reference point for moment: (0., 0., 0.) All values without fuselage			

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- ✓ Thermodynamic conditions and integral values for test case 2:
 - \checkmark Ma = 0.8, Re = 7 million, AoA = 1.495°
 - → No fluid-structure coupling!

Gas constant (NITROGEN)	296.8	J/kg*K
Reynolds number	7001020	-
Prandtl number	0.72	-
Sutherland constant	111	К
Sutherland reference viscosity	1.766e-05	Pa*s
Sutherland reference temperature	300.55	К
Reference density	1.2001	kg/m³
Reference temperature	248.2252	К
Reference pressure	88460.72	Ра
Reference Mach number	0.8003	-
Reference velocity:	257.0229	m/s

	Coarse grid 5.7million nodes	Medium grid 16 million nodes	
C_L	0.356374	0.358478	
C_{D}	0.014483	0.014516	
C _m	0.206806	0.207625	
C _m	-0.192529	-0.193579	
C _m z	0.010895	0.011135	
Reference point for moment: (0., 0., 0.) All values without fuselage			

Pressure side

 \checkmark Test case 1: cp at pressure sensor cuts (Ma = 0.8, Re = 23.5 million, AoA = -1.34°)

Suction side

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

 \checkmark Test case 1: cp at pressure sensor cuts (Ma = 0.8, Re = 23.5 million, AoA = -1.34°)

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Pressure side

 \checkmark Test case 2: cp at pressure sensor cuts (Ma = 0.8, Re = 7 million, AoA = 1.5°)

Suction side

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

 \checkmark Test case 2: cp at pressure sensor cuts (Ma = 0.8, Re = 7 million, AoA = 1.5°)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

-

Aeroelastic Prediction Workshop Grid Guidelines Committee

> Thorsten Hansen ANSYS Germany thorsten.hansen@ansys.com

HIRENASD Geometry

- https://c3.ndc.nasa.gov/dashlink/resources/354/ hirenasd_AePW_DLR.igs.gz
- IGES-format, Units in mm

Computational Domain

- Chord length
 - $C_{ref} = 0.3445 m$
- Domain
 - ~100 * Cref in all directions

Structured Hexahedral Grid

CICEM CFD 13.0 : Hirenasd_coarse	
File Edit View Info Settings Windows Help	IIOCKING] Entit Mesh] Properties] Constraints] Loards] Solve Ontions] Output] Cart3D] Post-processing]
Pre-Mesh Quality	
Criterion Min angle	
Histogram Options	
Min-X value 0 Max-X value 90	
Max-Y height 20	
Num. of bars 20	
Only visible index range	
Active parts only	
Apply OK Dismiss	
Model Model Model Model Model	
● ✔ Shells ● ● Volumes	
⊟ Blocking □	
└────────────────────────────────────	
Topology	
FRONT	- <u>-</u> 855 -> 90 : 1839432 (27 259%) 24
	Visible images: min: -36552.7 - 95.9102 - 36552.7 18-
	max 365154 36552.6
	max: 36515.4 36552.6 36552.6
	0 9 18 27 36 45 54 63 72 81 90
	B 0 1 8 27 36 45 54 63 72 81 30

Grid Information

	Grid 1	Grid 2	Grid 3
Number of nodes	6,878,220		
Number of elements	6,747,910		
Minimum grid angle	24°		
Maximum aspect ratio	67,948		
First grid node @ Wall, mm	0.000441 (y+~1)		

- Output format:
 - Unstructured CGNS
 - Units in m!
 - Double precision format

	Please edit the options.	following CGNS
Input Grid Type:	💠 Structured 🔶 Uns	structured
Topo file:	/scratch3/thansen/AeF	W/3_Hirenasd/1_Grid/Hirenasd_coarse.top
Boco file:	Hirenasd_coarse.fbc	
Output file:	/scratch3/thansen/AeF	W/3_Hirenasd/1_Grid/Hirenasd_coarse_24.cgns
Create default BC patches?:	🔶 Yes 💠 No	
Entities to use for BC patch:	🔶 Face elements 🔶	Nodes
CGNS file output version:	💠 default 🔶 2.4 💠	2.3 💠 2.2 💠 2.1
Done		Cancel

HIRENASD Geometry

Surfaces @ Trailing edge!

C AS TR

Status FOI

Mats Dalenbring and Adam Jirasek

First NS analysis

- DLR coarse unstructured mesh
 - M=0.8, a=1.5, ref data as provided by Markus and Pawel
 - Edge code (steady RANS, mltigrid, line implicit)
 - SA model
 - EARSM model

	SA	EARSM
CL	0.35580325	0.355901772
C _D	0.013656779	0.013072134
C _M	-0.556598453	-0.556491164

Mesh generation

- IcemCFD + TRITET
 - IcemCFD baseline inviscid mesh, used as a "background" mesh for TRITET

First mesh

First mesh – details of trailing edge

First mesh – details of trailing edge

First mesh

- Maximum y+ around 2.44 wing-fuselage intersection
 - Y+ on LE larger then 1 too (y₁ = 0.0004mm)

- Better resolution of TE, approx 6 points, can be more
- Improved resolution of LE
- Improved intersection between wing and wing-tip mesh

Interpolated Mode Shapes onto the CFD Mesh

NSYS[®]

- The number of nodes for the coupling surface, Panels 1-14, sum up to 141496 (Export from CGNS to Edge format)
- The modes from DLR interpolated (NASA) onto the surface mesh sum up to 159841 nodes?

Summary of preliminary results, Re = 23.5M, Mach = 0.8

AoA (deg)		CL	CD	СМу	
1.5		0.34918	0.01397	-0.54943	Medium Overset Grid
-1.34		-0.00205	0.00506	-0.00827]
AOA 1		5 dea	SA	FARSM	1
			0.35580	0.35590	Coarse unstructured grid
		C _D	0.01366	0.01307	Centaur, Edge software
		C _M	-0.55660	-0.55649	

A&A = -1.34deg	Coarse grid 5.7 million nodes	Medium grid 16 million nodes							
CL		0.033239							
C _D		0.009181							
C _{mx}		0.027526							
C _{my}		-0.042472							
C _{mz}	C _{mz} 0.00427 0.004355								
Reference point for moment: (0., 0., 0.) All values without fuselage									

AoA = 1.5deg	Coarse grid 5.7 million nodes	Medium grid 16 million nodes						
CL	0.368418	0.371262						
C _D	0.013735	0.013859						
C _{mx}	0.213967	0.215119						
C _{my}	-0.199340	-0.200775						
C _{mz}	0.011759	0.011955						
Reference point for moment: (0., 0., 0.) All values without fuselage								

Summary of preliminary results, Re = 23.5M, Mach = 0.8

AoA (c	deg)	CL		CD	СМу	
1.5		0.34918		0.01397	-0.54943	Medium Overset Grid
-1.34		-0.00205)	0.00506	-0.00827	
AOA	1.5	5 dea		SA	EARSM	
).35580	0.35590	Coarse unstructured grid
		C _D		0.01366	0.01307	Centaur, Edge software
	(-(0.55660	-0.55649	

AøA = -1.34deg	Coarse grid 5.7 million nodes	Medium grid 16 million nodes						
CL	0.033519	0.033239						
C _D	0.009154	0.009181						
C _{mx}	0.027913	0.027526						
C _{my}	-0.042686	-0.042472						
C _{mz}	0.00427	0.004355						
Reference point for moment: (0., 0., 0.) All values without fuselage								

AøA = 1.5deg	Coarse grid 5.7 million nodes	Medium grid 16 million nodes							
CL									
C _D									
C _{mx}									
C _{my}									
C _{mz}									
Reference point for moment: (0., 0., 0.) All values without fuselage									

				Series	nation	ReC	Tt -M=0.8	Pt M=0.8	05 M-0.8	Excitation	Nominal Excitation Frequency (HS=Ma0.8)	Nominal Alpha M=0.8			Wind-off	Excitati	lon Trials	[%]				М	ach Nun	iber									
					F	[Mio]	[K]	[kPa]	[Mio]		[Hz]	[Deg]	20	40	50	60	20.40	40, 60	44, 66	80	0.20	0.70	0.75	0.80	0.83	0.85	0.88						
				0	ON	2.08	276	125	-	ON (1 Power	Level) 26.04	-2.00		94		83					100, 102, 103												
						(M=0.2)				ON (1 Power ON (1 Power	Level) 26.2	-2.00	80, 81	82								+											
							1			ON (1 Power	Level) 78	-2.00	85, 86	87, 95		88					104, 105, 106, 107												
					_					ON (1 Power	Level) 263	-2.00	89, 90	91,92, 96,9	7	93					108, 109, 110, 111												
				1	ON	7.0	279	136	0.22	OFF ON (2 Power	- Levels) 25.92	-2.9 to +4.2									128	129	131	132	133	134	135						
										ON (2 Power	Levels) 26.92	1.50										139	141	143	147	149	153		1				
										ON (2 Power	Levels) 78.9	-1.27										154	156	158	160	162, 163	165						
										ON (2 Power ON (2 Power	Levels) 78.9 Levels) 265.8	-1.27										155	171	173	101	164	100						
										ON (2 Power	Levels) 265.8	1.50										170	172	174	176	178	180						
					ON	10.0	295	210	0.34	OFF	-	-2.9 to +4.2										183	186	187	188	189	100						
				3		18.0	297	296	U.48	ON (1 Power	Level) 25.04	-2.9 10 +3.2	207, 213	208, 214								194	195	196									
										ON (1 Power	Level) 26.2	-2.00	209																				
										ANI IS DONNE	78	-2.00	215	210, 216										_									
				4	OFF	7.0	279	136	0.22	ON (2 Power	Levels) 26.04	-2.00					226	227															
										ON (2 Power	Levels) 78	-2.00					228	229															
										ON (2 Power	Levels) 263	-2.00					230	231					224	110									
										OFF		-2.5 10 +4.2								$\left \right $			236	235									
				5	OFF	23.5	205	302	0.48	ON (2 Power	Levels) 26.04	-2.00							242														
										ON (2 Power ON (2 Power	Levels) 78	-2.00							243	+ +		+											
										OFF	-	-2.0 to +3.0							244			248	249	250	251	252	253						
										ON (2 Power	Levels) 28.4	-1.34										256	258	260	262	264	266						
										ON (2 Power	Levels) 28.4	1.50										257	259	261	263	265	267						
Dec	TA	D4							NL	a main a l	Manaimal																						
Rec	п	PL	q/⊏						IN	ominai	Nominal																						
									Ex	citation	Alpha					- 46 1		<i>с</i> т		F0/ 1									4				
M > = 0.8	M=0.8	M=0.8	M=0.8			Excit	ation		Fre	equency	M=0.8				vvina	I-OTT L	Excita	ation I	riais	[%]								IV	lach Ni	Imper			
						LACIU	auon		110		M 0.0																						
									(HS	=ivia0.8)																							
[Mio]	[K]	[kPa]	[Mio]							[Hz]	[Deg]	20		40	E	0	60	20	40	40.4	60 44 66	00	-	(1 20		07	0	0.75	0.00	0.02	0.05	T
0.00	0.70	405			SNL /				,	00.04	0.00	20	_	40	5	U	00	20,	, 40	40, (00 44,00	00	-		J.ZU	400	0.7	0	0.75	0.00	0.00	0.00	+
2.08	270	125	-) N (1 Pov	ver Le	evel)	4	26.04	-2.00			94			83						1	100,	102,	103							
					DN (*	1 Pov	ver Le	evel)		26.2	-2.00	80, 81		82																			
(M=0.2)				C	DN (*	1 Pov	ver Le	evel)		71	-2.00	84																					
. ,				0	ъNŻ	1 Pov			-	78	2.00	85 86	8	7 05			88	-					10/	1 10	5 10	6 10	7	_	+				⊢
						1 0	VOILO			202	-2.00	00,00	64.0	2,000	-		00						400	1, 10	0, 10	0, 10	4	_	$ \longrightarrow $			ļ	┢
				C) N (1 Pov	ver Le	evel)		263	-2.00	89, 90	91,9	2, 96,9	<u> </u>		93						108	3, 10	9, 11	0, 11	1						
7.0	279	136	0.22			OF	F			-	-2.9 to +4.2														128		12	9	131	132	133	134	
				0)N (2	2 Pow	/er Le	vels)		26.92	-1.27																13	8	140	142	146	148	
					N C	DOM				26.02	1.50		<u> </u>		-			<u> </u>			_		<u> </u>				13		1/1	1/3	147	1/0	⊢
					11 (2			veis)		20.32	1.50				_			_					_				15	-	450	450	147	143	-
				0	PN (∠	2 POW	er Le	veis)		78.9	-1.27																15	4	156	158	160	162, 163	1
				0)N (2	2 Pow	/er Le	vels)		78.9	1.50																15	5	157	159	161	164	
				0	N (2	2 Pow	/er Le	vels)		265.8	-1.27																16	9	171	173	175	177	Г
				0	N (2	DOM		vole)		265.8	1.50		-			-		-				-	-				17	n	172	174	176	178	⊢
			<u> </u>	Ļ		1 35.0	1 124	218	0.34	200.0 ON (1 Rome)	1.00	-2.00		36.9	<u> </u>	, L						<u> </u>	_				<u> </u>		112	114	170	170	
				· ·		22.0		- 10		ON (1 Power	Level) 80.0	-2.00		369									-										
										ON (1 Power	Level) 262.0	-2.00		370																			
										OFF ON (1 Power	Level) 29.3	-2.9 to +4.2										360	361	362	363	364	365						
										ON (1 Power	Level) 82.0	-1.33											377	378	379	380							
										ON (1 Power	Level) 272.4	-1.33											383	384	385	386	387						
			ŀ	8	OFF	50.0	123	308	0.48	2 x ON (1 Power ON (1 Power	er Level) 272.4	-1.33		400						+ +			388	389		390							
				-						ON (1 Power	Level) 80.5	-2.00		401																			
										ON (1 Power	Level) 273.8	-2.00		403																			
										ON (1 Power	Level) 269	-2.9 10 +3.2								+ +			393	394 3	408	397							
							1			ON (1 Power	Level) OFF	-1.33											412	413	414	415							
				9	OFF	73.0	122	449	0.70	ON (1 Power	Level) 26.0	-2.00			431																		
							1			ON (1 Power	Level) 81.5	-2.00				432				433		+											
							1			OFF	-	-2.9 to +2.2											419	420	421	422							
			I	-	055	22.6	463	246	0.34	2 x ON (1 Pow	er Level) 271.4	-1.32			454								425	426	427	428							
				14	orr.	23.5	102	210	0.34	ON (1 Power	Level) 81.3	-2.00			401	452				\vdash		+					+						
										ON (1 Power	Level) 270.9	-2.00								453													
										OFF ON (1 Down	Level) 20.4	-2.9 to +4.2										442,443	444	445	445	447	448						
										ON (1 Power	Level) 29.4	2.50			+					\vdash			-30	459	480	462	+						
										ON (1 Power	Level) 81.4	-1.33											463	464	465	466							
										ON (1 Power	Level) 269.0	-1.33											469	470	471	472							
										2 x ON (1 POW 2 x ON (1 Pow	er Level) 269.0 er Level) 269.0	2.50			+					\vdash		┝──┝	-13	475	4/6	478	—						
				11	OFF	23.5	205	302	0.48	ON (1 Power	Level) 26.25	-2.00			485																		
										ON (1 Power	Level) 80.25	-2.00				486				497													
										ON (1 POWE	269.9	-2.00			+		<u> </u>			467		+	_	482			—						
										OFF	-	-1.34											490	491	493	494							
				12	055	7.0	270	430	0.77	2 x ON (1 Pow	er Level) 269.2	-1.34		507									495	496	499	500							
				12	OFF	7.0	2/9	1.35	0.22	ON (1 Power	Level) 79	-2.00		508	+					+		+					+						
							1	1		ON (1 Power	Level) 266.8	-2.00		509									_										
					1	1	1	1	1 1	OFF	-	-0.9 to +8.0								I T			504										

Analyst Data Resources Available

- Configurations in detail
 - Model description
 - Test/analysis conditions
 - Known deficiencies
 - Instrumentation
 - Coordinate system definition
 - Excitation for oscillatory cases
 - Structural dynamic information
 - Reference quantities
- Grids
- Structural dynamic model- HIRENASD
- Preliminary analysis results
- Experimental comparison data (except for semi-blind case)

Configurations Selected

Rectangular
 Supercritical Wing

 Benchmark Supercritical Wing

AePW Dataset Selection

- 1. Rectangular SuperCritical Wing:
 - a) Steady Cases
 - . $\dot{M} = 0.825, \alpha = 2^{\circ} (RTO Case 6E23, TDT pt. 626)$
 - ii. M = 0.825, $\alpha = 4^{\circ}$ (RTO Case 6E24, TDT pt. 624)
 - b) Dynamic Cases
 - i. M = 0.825, $\alpha = 2^{\circ}$, $\theta = 1.0^{\circ}$, f = 10 Hz. (RTO Case 6E54, TDT pt. 632)
 - ii. $M = 0.825, \alpha = 2^{\circ}, \theta = 1.0^{\circ}, f = 20$ Hz. (RTO Case 6E56, TDT pt. 634)
- 2. Benchmark Supercritical Wing (Semi-Blind)
 - a) Steady Case
 - i. $M = 0.85, \alpha = 5^{\circ}$
 - b) Dynamic Cases

i.
$$M = 0.85, \alpha = 5^{\circ}, \theta = 1^{\circ}, f = 1 \text{ Hz}$$

ii. $M = 0.85, \alpha = 5^{\circ}, \theta = 1^{\circ}, f = 10 \text{ Hz}$

3. HIRENASD

- a) Steady (Static Aeroelastic) Cases
 - i. Mach 0.80, Re = 7.0 million, $\alpha = 1.5^{\circ}$, static aeroelastic, (exp. 132).
 - ii. Mach 0.80, Re = 23.5 million, α = -1.34°, static aeroelastic, (exp. 250).
- b) Dynamic Cases: forced oscillation at 2nd Bending mode frequency
 - i. Mach 0.80, Re = 7.0 million, $\alpha = 1.5^{\circ}$, (exp. 159).
 - ii. Mach 0.80, Re = 23.5 million, $\alpha = -1.34^{\circ}$, (exp. 271).

Gridding Guidelines for 1st AePW (AePW1)

For the current workshop, a sequence of coarse, medium and fine grids are required for each configuration and the guidelines can be summarized as follows:

- 1. RSW initial spacing normal to all viscous walls (Re = 4M based on Cref = 24")
 - a. Coarse: y⁺ ~ 1.0, dy = 0.000158"
 - b. Medium: y⁺ ~ 2/3, dy = 0.000105"
 - c. Fine: $y^+ \sim 4/9$, dy = 0.000070"
- 2. BSCW initial spacing normal to all walls (Re = 4.5M based on Cref = 16")
 - a. Coarse: $y^+ \sim 1.0$, dy = 0.000094"
 - b. Medium: y⁺ ~ 2/3, dy = 0.000063"
 - c. Fine: y⁺ ~ 4/9, dy = 0.000042"
- 3. HIRENASD wing initial spacing normal to all walls (Re = 23.5M based on $C_{ref} = 0.3445$ meter) Note: Same grids to be used for Re = 7M and Re = 23.5M cases.
 - a. Coarse: $y^+ \sim 1.0$, dy = 4.40961e-7 meter
 - b. Medium: $y^+ \sim 2/3$, dy = 2.93973e-7 meter
 - c. Fine: y⁺ ~ 4/9, dy = 1.95982e-7 meter
- 4. Normal growth rate for cells in boundary layer region < 1.25
- Structured grids will have at least 2 cell layers of constant spacing normal to viscous walls.
- 6. Farfield will be located at ~100 cref for all grids.
- 7. Local spacings on medium grid:
 - a. Chordwise spacing for wing leading and trailing edges ~0.1% local chord
 - b. Wing spanwise spacing at root and at tip ~0.1% local semispan
 - c. Cell size near fuselage nose and aftbody ~2% cref
- Wing trailing edge: minimum 4, 6 and 9 cells for coarse, medium and fine grids, respectively.
- 9. Grid family:
 - a. Medium mesh representative of current engineering practice
 - b. Maintain a parametric family of uniformly refined grids in sequence
 - c. Grid size to grow ~3X for each level of refinement [Structured 1.5X in I,J,K directions]
 - d. Give consideration to multigridable dimensions on structured meshes
 - e. Sample sizes: Coarse: 3M, Medium: 10M, Fine 30M

dy refers to the normal spacing of the first cell at the viscous wall. Special effort is required to ensure that sequences of coarse, medium and fine meshes constitute a consistent "family" of grids suitable for a grid convergence study. This entails the preservation of mesh topology, stretching factors, and local variations in resolution as much as possible between grids of the same sequence. The mesh spacing specifications given for the medium grid are to be scaled appropriately for the coarse and fine grids. The given grid sizes are only estimates based on the objective that the medium grid should be representative of current engineering practice enabling a solution on mid-range computational hardware in reasonable turnaround time (i.e. considerably less than 24 hours). For unstructured grids designed for vertex-based solvers, the spacing refers to inter-nodal spacing and the resulting grid sizes are expected to be similar to the structured grid sizes. For unstructured grids for cell-centered solvers, the spacing refers to spacing between cell centers (or surface face centers), which corresponds approximately to a factor of 2 reduction in the overall number of surface points compared to the nodal solver case, for a triangular surface grid. For tetrahedral cell-centered solver mesh, the total number of grid points will be approximately 1/3 of the node based solver mesh.

Summary of AePW Grids

		GRID TYPE																
			U	Instru	ucture	ed					Str	uctu	red	0	verse	t		
Configuration			Nod	e Bas	ed		Cell Centered							Hex				
		Mixe	d	Tet	trahe	dra		Mixe	d	Tet	trahe	dra	M	Multiblock				
	С	Μ	F	С	М	F	С	М	F	С	Μ	F	С	М	F	С	Μ	F
RSW													٦/					
	ν	V	ν	ν	ν	ν	0	0	0				V					
BSCW	0	0	0				0	0	0				0	0	0			
HIRENASD	v	V	V				0	0	0				v			V		

 \mathbf{V} = Complete \mathbf{O} = In process \mathbf{O} = Desired

Plan of action for structural dynamic model

 Use analytical mode shapes
 Use experimental frequencies for 1st 4 Bending modes & 1st Torsion
 Use analytical frequencies for additional 5 modes

nucy, mz	400 300 200						
anhais	200 100 0						
	1st Be	ndines 2nd P	endines 3rd P	endines	rorsion Ath	Bendins	0
		- Fyn	erimen	t 🗖 Δ	nalweie		

		Analytical Frequency	Experimental Frequency
Mode #	Description	(Hz)	(Hz)
1	1st Bending	26.54	26
2	2nd Bending	86.02	78.6
3	1st Fore-Aft	156.94	
4	3rd Bending	189.31	166.2
5	1st Torsion	272.86	265.8
6	4th Bending	321.77	234.6
7	2nd Fore-Aft	422.98	
8	2nd Torsion	450.51	
9	5th Bending	496.68	
10	3rd Torsion	622.41	

	Parameters	arameters		ts	Configuration			
ameters			English	SI	RSW (English units)	BSCW (English units)	HIRENASD (SI units)	HIRENASD (SI units)
	Mach number	Μ			0.826	0.848	0.8003	0.8
	Reynolds number (based on ref chord)	Re _c			4.01E+06	4.49E+06	7001020	23483300
	Dynamic pressure	q	psf		108.65	204.20		
ara	Velocity	V	ft/s	m/s	413.73	468.98	257.02	220.44
on Pa	Speed of sound	а	ft/s		501.18	552.93		
	Static temperature	Tstat	deg F	Deg K	37.12	87.91	248.2	182.776
litia	Density		slug/ft^3	kg/m ³	0.001270	0.001857	1.2001	3.628
ond	Ratio of specific heats				1.132	1.116		
S S	Dynamic viscosity		slug/ft-s		2.620E-07	2.590E-07		
'Si	Prandtl number	Pr			0.78	0.67	0.72	0.72
ШУ	Test medium				R-12	R-134a	Nitrogen	Nitrogen
m8	Total pressure	Н	psf		410.48	757.31		
A	Static pressure	Р	psf	Pa	280.76	512.12	88460.7	196816.89
	Purity	Х	%			95		
	Total temperature	Т	deg F		60.00	109.59		

Reference quantities

		RSW	BSCW	HIRENASD
Reference chord	c _{ref}	24 inches	16 inches	0.3445 m
Model span	b	48 inches	32 inches	1.28571 m
Area	А	1152 in ²	512 in ²	0.3926 m^2
Moment	Х	11.04 inches	4.8 inches	0.252 m
reference point,	У	0	0	-0.610 m
system defns	Ζ	0	0	0
Transfer function quantity	reference	Pitch angle	Pitch angle	Vertical displacement (at x=1.24521m, y=0.87303m)

Comparison Data Matrix

		REQUIRED C	ALCULATIONS		
CONFIGURATIO N	GRID CONVERGENCE STUDIES	STEADY CALCULATIONS	DYNAMIC CALCULATIONS		
Steady-Rigid Cases (RSW, BSCW)	C _L , C _D , C _M vs. N- 2/3	 Mean Cp vs. x/c Means of C_L, C_D, C_M 			
Static-Aeroelastic Cases (HIRENASD)	C _L , C _D , C _M vs. N ^{-2/3}	 Mean C_p vs. x/c Vertical displacement vs. x/c Twist angle vs. x/c Means of C_L, C_D, C_M 			
Forced Oscillation Cases (all configurations)	TBD		 Magnitude and Phase of C_p vs. x/c at span stations corresponding to transducer locations Magnitude and Phase of C_L, C_D, C_M at excitation frequency Time history of Cp at each span station for 3 pressure transducer locations 		

An ascii template will be provided for submission of data

Workshop participant submittals

•No formal AIAA papers

 Presentation & data submission only

•Requires 1 page letter of intent or abstract MRL and USF Contribution to AePW - 1

N. N. Thusiast_ Multielement Research Lab, Mail Stop 000, Happy Forks, VA 00000 email: m.n.thusiast@mrl.gov, (777) 777-7777

Soar N. Airt

University of Southern Flight, Mail Code 98765, Lofty Heights, TX 00000 email: s.n.air@usf.edu, (888) 888-8888

We intend to participate in the AePW-1, to be held April 21-22 2012 in Honolulu, HI. We plan to perform the following sets of computations:

- 1. Configuration 1 RSW , Steady Case, i. M=.825, α =2 deg \bullet Code: RANS-CFD-3D
 - Grid: Str-OnetoOne-C-v1 (supplied by AePW-1 committee)
 - Turbulence model: Menter SST
- 2. Configuration 1 RSW , Unsteady Case, i. M=.825, $\alpha\text{=}2$ deg, 10 Hz Same as above
- 3. Configuration 2 BSCW, Steady case, M=.85, α =5 deg, 10 Hz Same as above
- 4. Configuration 2 BSCW, Unteady case, M=.85, α =5 deg, 20 Hz Same as above
- 5. Configuration 3 HIRENASD Configuration, steady, M=.8, Re=7 million, α =1.5 deg
 - Code: RANS-CFD-3DAe
 - Grid: Str-OnetoOne-C-v1 (supplied by AePW-1 committee)
 - Turbulence model: S-A

We plan to submit our results electronically by the March 20, 2012 deadline to the AePW-1 committee.

RANS-CFD-3DAe is a Reynolds-averaged Navier-Stokes code developed by Et et al., ¹ widely used at the Multielement Research Lab. It is specifically formulated to work on three-element wing configurations. It uses point-matched grids, and is an upwind finite-volume structured code.

LES-CFD-3D is a large-eddy simulation code developed at the University of Southern Flight². It employs 6th order central differencing in space and 3rd order temporal differencing, along with 9th order explicit filtering.

References

1 Et, H., Cet, P., and Era L., "Description of RANS-CFD-3D," Journal of Codes, Vol. 6, No. 5, 1994, pp. 5–21.

2 Author, A. and Author B., "Description of LES-CFD-3D," Journal of Lengthy Papers, Vol. 9, No. 2, 2008, pp. 22–1021.

Corresponding Author. Senior Research Scientist, High Lift Branch.

[†] Professor and Chair, Dept. of Aeronautical Engineering.

Information follows for reference during the panel discussion

Rectangular Supercritical Wing (RSW)

- Simple, rectangular wing
- Static and forced oscillation pitching motion about the 46% chord
- Treated here as rigid

Known deficiencies:

- Splitter plate deficiencies
 - Small size
 - Located in the tunnel wall boundary layer
 - 6" off of the wall
 - Estimated boundary layer thickness: 12"
- Tunnel wall slots open

M=0.825, Re_c=4.0 million, test medium: R-12 a) Steady Cases i. $\alpha = 2^{\circ}$ ii. $\alpha = 4^{\circ}$ b) Dynamic Cases i. $\alpha = 2^{\circ}$, $\theta = 1.0^{\circ}$, f = 10 Hz ii. $\alpha = 2^{\circ}$, $\theta = 1.0^{\circ}$, f = 20 Hz

RSW Model Layout and Airfoil

Shown as mounted in the wind tunnel Oscillated in pitch about the 46% chord All units in inches

12% thick supercritical airfoil

Experimental data acquired in R-12 0 Re_c = 4 million, Mach=0.825

RSW Model Layout and Airfoil

Known deficiencies: Splitter plate deficiencies •Small size •Located in the tunnel wall boundary layer •6" off of the wall •Estimated boundary layer thickness: 12"

RSW Data

- Only data with fixed BL trip (6% chord) considered due to transition effects.
- Mach 0.825 is target Mach number since it is off-design for the airfoil and exhibits transonic nonlinearity.
 - Steady case 1a matches mean AOA for dynamic cases
 - Steady case 1b is most extreme Mach/AOA combination available (static stress case)
 - Two dynamic cases chosen to demonstrate ability of methods to properly capture frequency effects.
- All data acquired in R-12 @ $Re_c = 4$ million
- 4 chords of data each with a total of 29 pressure measurements (14Upper, 14 Lower)
 - 30.9, 58.8, 80.9, and 95.1 percent span.
 - Static data: Mean Cp
 - Forced Oscillation Data: Real and Imaginary Cp/Θ.

RSW: Coordinate system, Instrumentation

<u>Unsteady Pressure</u> <u>Measurements</u> **4 chords** (30.9, 58.8, 80.9, and 95.1 % span)

29 pressure per chord (14Upper, 14 Lower)
Point Num	aber = 62	6 Ma	ch Number	= 0.825	Alphao	= 2.00,	deg.	
q 108.5	H 410.1	V 413.4	Rn .401E+07	gamma 1.132	Cp* -0.40	9		
	y/s	=0.309	y/s	=0.588	y/s	=0.809	y/s	=0.951
x/c	Cpu	Cpl	Cpu	Cpl	Cpu	Cpl	Cpu	Cpl
.000	1.184		1.171		1.180		1.173	
.025	-0.616	-0.092	-0.768	-0.160	-0.761	-0.136	-0.675	-0.165
.050	-0.834	-0.295	-0.793	-0.213	-0.883	-0.333	-0.928	-0.419
.100	-0.849	-0.424	-0.814	-0.424	-0.877	-0.494	-0.862	-0.468
.200	-0.875	-0.409	-0.868	-0.420	-0.908	-0.389	-0.456	-0.370
.260	-0.841	-0.438	-0.873	-0.429	-0.649	-0.407	-0.479	-0.321
.320	-0.036	-0.365	-0.040	-0.391	-0.020	-0.329	-0.014	-0.287
.380	-0.703	-0.344	-0.817	-0.413	-0.325	-0.331	-0.278	-0.289
.440	-0.460	-0.384	-0.336	-0.327	-0.314	-0.001	-0.283	-0.337
.500	-0.659	-0.393	-0.353	-0.381	-0.335	-0.398	-0.258	-0.338
.560	-0.347	-0.265	-0.333	-0.236	-0.332	-0.302	-0.244	-0.352
.620	-0.393	0.103	-0.409	-0.009	-0.358	-0.134	-0.238	-0.153
.700	-0.476	0.164	-0.466	0.153	-0.382	0.144	-0.244	0.138
. 800	-0.483	0.231	-0.456	0.218	-0.428	0.225	-0.288	0.204
900	-0.201	0.342	-0.220	0.349	-0.248	0.339	-0.361	0.322

Case 1a

Point Num	ber = 62	4 Ma	ch Number	= 0.826	Alphao	= 4.01,	deg.	
q 108.5	H 409.8	V 413.7	Rn .401E+07	gamma 1.132	Cp* -0.40	6		
	y/s	=0.309	y/s	=0.588	y/s	=0.809	y/s	=0.951
x/c	Cpu	Cpl	Cpu	Cpl	Cpu	Cpl	Cpu	Cpl
.000	1.164		1.139		1.146		1.150	
.025	-0.841	0.144	-0.956	0.088	-0.934	0.092	-0.904	0.028
.050	-1.024	-0.073	-1.028	-0.005	-1.108	-0.115	-1.108	-0.227
.100	-1.072	-0.213	-1.057	-0.223	-1.096	-0.290	-1.115	-0.327
.200	-1.078	-0.274	-1.046	-0.289	-1.065	-0.290	-0.620	-0.312
.260	-1.054	-0.277	-1.060	-0.260	-1.019	-0.277	-0.568	-0.272
.320	-0.048	-0.268	-0.048	-0.293	-0.034	-0.262	-0.020	-0.260
.380	-1.005	-0.250	-1.044	-0.320	-0.463	-0.274	-0.356	-0.266
.440	-1.045	-0.323	-1.021	-0.256	-0.368	-0.001	-0.333	-0.326
. 500	-0.925	-0.354	-0.590	-0.342	-0.343	-0.374	-0.286	-0.335
.560	-0.950	-0.263	-0.331	-0.201	-0.323	-0.318	-0.258	-0.369
.620	-0.442	0.101	-0.308	-0.013	-0.336	-0.157	-0.241	-0.189
.700	-0.317	0.200	-0.358	0.191	-0.365	0.156	-0.251	0.138
.800	-0.351	0.284	-0.384	0.268	-0.428	0.260	-0.337	0.205
. 900	-0.199	0,400	-0.233	0.393	-0.277	0.379	-0.528	0.334

Case 1b

Case 2a

	Point Nu	umber = 632	Mac	h Number	= 0.825	Alphac	o = 1.98,	deg.
q,psf	H, ps	sf V,fp	s Rr	1	gamma fi	req,Hz	k tł	ieta, deg
108.7	410	9 413.	7 .4018	5+07	1.132 1	10.03	0.152	1.014
		y/s = 0	.309			y/s =	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.315	0.324			-0.424	0.374		
.025	-4.957	2.828	6.145	-2.866	-4.078	2.317	6.412	-2.963
.050	-6.858	4.056	5.476	-2.694	-7.082	4.007	5.059	-2.252
.100	-3.974	2.033	5.694	-2.347	-3.826	1.950	4.975	-1.860
.200	-4.708	2.806	3.684	-0.577	-4.134	2.445	3.648	-0.429
.260	-5.251	3.218	5.786	-1.314	-4.838	2.919	5.702	-0.842
.320	-0.277	0.196	3.272	0.194	-0.269	0.206	3.176	0.537
.380	-4.289	3.037	3.133	0.446	-14.473	12.805	2.371	0.920
.440	-10.220	7.562	1.948	0.759	-12.228	7.406	1.560	0.915
.500	-15.071	7.253	1.172	0.682	-2.619	-3.754	0.566	0.912
.560	-10.809	-0.927	-0.083	0.502	-0.710	-5.321	-0.404	0.395
.620	1.063	-8.181	-0.111	0.496	0.138	-5.253	-0.095	0.140
.700	4.069	-7.371	1.297	0.559	1.694	-4.069	0.991	0.750
.800	3.353	-0.799	1.725	0.541	1.879	-0.399	1.340	0.841
.900	0.303	0.911	1.822	0.397	0.003	0.735	1.324	0.758
		v/s = 0	.809			v/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
,	1	1	1 /	1 ,	1	1	1,	1 ,
.000	-0.459	0.329			-0.311	0.245		
.025	-3.938	2.219	5.071	-2.509	-5.264	2.613	5.078	-2.062
.050	-7.291	4.210	5.096	-2.226	-4.581	2.457	5.085	-2.044
.100	-3.881	2.089	4.128	-2.157	-6.482	3.803	4.251	-1.163
.200	-4.509	2.807	1.751	-0.054	-2.760	1.969	1.752	0.015
.260	-10.386	8.808	1.861	-0.310	-3.463	2.241	1.827	0.375
.320	-0.277	0.195	1.134	0.535	-0.107	0.036	0.994	0.648
.380	-3.559	0.062	0.846	0.777	-2.025	0.191	0.758	0.590
.440	-2.438	-1.189	-0.448	0.000	-1.716	-0.349	0.420	0.602
.500	-1.470	-2.212	0.199	0.803	-1.133	-0.844	0.185	0.593
.560	-0.807	-2.292	-0.646	0.439	-0.609	-1.018	-0.688	0.495
.620	-0.318	-2.352	-0.961	0.277	-0.278	-1.037	-0.905	0.577
.700	0.028	-1.751	0.292	0.560	-0.053	-0.846	0.029	0.451
.800	0.380	-0.338	0.435	0.585	-0.678	-0.015	0.283	0.423
.900	-0.195	0.470	0.530	0.709	-3.380	1.118	0.549	0.292

Case 2a (Cont'd)

Case 2b

	Point Nu	umber = 63	34 Mac	ch Number	- 0.826	Alphac	o = 1.98,	deg.
	q,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k	theta, deg
	108.9	411.1	414.1 .	401E+07	1.132	20.09	0.305	1.005
		v/s =	0.309			v/s =	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
. 000	0.030	0.168			-0.135	0.184		
.025	-3.311	3.219	4.942	-4.132	-2.849	2.629	5.057	-4.350
.050	-4.336	4.044	4.336	-4.044	-5.198	4.535	4.038	-3.523
.100	-2.735	2.328	4.891	-3.740	-2.632	2.094	4.269	-3.240
. 200	-2.903	2.903	4.658	-1.705	-2.807	2.241	4.154	-1.586
.260	-2.872	2.688	6.246	-2.498	-2.970	2.492	6.165	-2.232
. 320	-0.137	0.182	5.548	-0.662	-0.108	0.133	5.243	-0.137
. 380	-1.639	0.489	5.511	1.855	0.545	12.473	4.399	2.165
.440	0.435	4.597	3.099	3.109	-2.268	6.334	2.936	3.030
. 500	0.714	15.148	0.862	3.310	-4.179	-0.580	0.593	3.079
.560	-5.578	7.996	-0.628	1.773	-4.363	-2.109	-0.616	1.656
620	-8.027	-3.557	-0.450	1.292	-4.218	-3.020	-0.320	1.035
.700	-7.085	-7.185	1.660	1.564	-2.643	-4.398	1.333	1.561
. 800	2.308	-4.131	2.407	1.527	1.844	-1.944	2.013	1.590
900	0.951	0.384	2.191	0.815	0.457	0.789	2.015	0.940
		v/s =	0.809			v/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
000	-0.170	0 152			-0 127	0 114		
025	-2 796	2 518	4 404	-3 717	-4 114	3 066	4 415	-3 137
050	-5 136	4 433	4.404	-3 485	-3 406	2 585	4.371	-3 294
100	-2 823	2 221	3 895	-3 798	-4 890	4 281	4 226	-2 372
200	-2.983	2.199	2.406	-0.626	-0.634	0.384	2.439	-0.248
260	-3.816	7.269	3.175	-1.718	0.351	1.025	3,306	0.069
320	0.089	0.146	2.175	1.337	-0.028	0.050	2.101	1.025
380	-1.053	1,627	1.817	2.018	-0.629	0.737	1.645	1,410
440	-1.673	0.727	1.064	0.000	-0.768	0.591	1.099	1.800
. 500	-2.103	-0.162	0.289	2.702	-0.954	0.170	0.276	1.803
.560	-2.114	-0.854	-0.854	1,611	-0.884	-0,224	-0.680	1,507
620	-1.859	-1.416	-1.084	0.894	-0.692	-0.398	-0.913	1.168
700	-1.248	-1,557	0.599	1,425	-0.538	-0,509	0.164	1.071
800	-0.107	-0.676	0.773	1.387	-0.854	0.045	0.432	0.931
900	-0.317	0.606	0.804	1.051	-2.675	1.405	0.675	0.614

Case 2b (Cont'd)

Questions

- Influence of splitter plate
- Influence of tunnel wall
- Influence of structural dynamics

RSW Structural dynamics

- Assumed rigid
- Oscillated at frequencies separated from structural dynamic / aeroelastic modes
- 1st bending mode: 34.8 Hz

BSCW

Benchmark Supercritical Wing (BSCW)

- Simple, rectangular wing
- Data acquired under mixed attached/separated flow conditions

Known deficiencies:

- Limited number of pressure transducers in experimental data
- Limited number of discrete frequencies of oscillation
- Mach number is at edge of acceptable range for quality pressure data with splitter plate

M=0.85, Re_c=4.49 million, test medium: R-134a

- a) Steady Case
 - i. $\alpha = 5^{\circ}$
- b) Dynamic Cases
 - i. $\alpha = 5^{\circ}, \theta = 1^{\circ}, f = 1 \text{ Hz}$
 - ii. $\alpha = 5^{\circ}, \theta = 1^{\circ}, f = 10 \text{ Hz}$

BSCW Geometry and Test Configuration

<u>Unsteady Pressure</u> <u>Measurements</u> 1 chord at 60% span

Experimental data acquired in R-134a @ q = 200 psf, $Re_c = 4.49$ million, Mach=0.85

BSCW Data

- Fixed transition @ 7.5% chord.
- 1 chord of data with a total of 40 in-situ unsteady pressure measurements (20 Upper, 20 Lower)
 - 60 percent span.
 - Static data: Mean Cp
 - Forced Oscillation Data: Mean Cp, Real and Imaginary Cp/Theta, CP time histories.

BSCW Structural Properties

- Designed as a rigid wing on a rigid mounting system.
 - Mounting system oscillates wing in pitch about 0.30 chord.
- Structural frequencies of installed wing and mounting system:
 - 24.1 Hz spanwise (Wing flapping)
 - 27.0 Hz in-plane.
 - 79.9 Hz torsion

Airfoil Comparisons

HIRENASD

HIRENASD

- 3-D aeroelastic wing with generic fuselage model
- Steady and forced (structural resonance) oscillation testing
- Data:
 - Balance forces for integrated load comparisons,
 - Mean and fluctuating pressure data
 - Surface deformation data from optical and strain measurements during testing
- Known deficiencies:
 - Limited deflection data
 - Only excited at natural frequencies

M = 0.80, test medium: nitrogen

- a) Steady (Static Aeroelastic) Cases
 - i. Re = 7.0 million, $\alpha = 1.5^{\circ}$
 - ii. Re = 23.5 million, α = -1.34°
- b) Dynamic Cases: forced oscillation at 2nd Bending mode frequency
 - i. Re = 7.0 million, $\alpha = 1.5^{\circ}$
 - ii. Re = 23.5 million, α = -1.34°

HIRENASD Project Partners

Aachen University:

Department of Mechanics

Institute for Lightweight Structures

Institute for Geometry and Applied Mathematics

Shock Wave Laboratory

Thanks to ...

- German Research Foundation (DFG) for funding HIRENASD
- Airbus Industry for supporting the balance for dynamic force measurement
- DLR for advice concerning data acquisition and providing AMIS II
- *ETW* for providing windtunnel adaptations, for e.g. dynamic force measurement, and continuous advice during preparation of model and measuring equipment

Windtunnel Model and Assembly

RINTHAACHEN

Wind Tunnel Balance and Vibration Excitation Mech.

No access to wind tunnel test section during tests
Due to thermal insulation, space for excitation mechanism integrated in clamping unit

6 components balance 4 piezo elements

Vibration excitation by 4 piezo stacks producing internal force couples in the clamping device - wing unit

Heated enclosure thermally conditoned part

cold part (down to 110K)

wing clamping

HIRENASD funded by DFG ENASD Geometry

RWTHAACHEN UNIVERSITY

(https://heinrich.lufmech.rwth-aachen.de/en/windtunnel-assembly)

Measuring Equipment for Pressure

HIRENASD Structural Dynamics

Excitation Frequencies from Raw Data of Static Tests

RWTHAACHEN UNIVERSITY

Acc13

1

Determination of resonance frequency:

- Maximum effectiveness of excitation mechanism at resonance frequency
- Resonance frequency depending on flow conditions
- Determination of frequencies during steady wind tunnel tests from power spectra

Case Label	Description	Temp (K)	Boundary condition	Mode 2
			constrained just at end of	

HIRENASD 2nd Bending Mode Variation among Analyses

Unstr. FEM TET10 IFASD 2009-130 fig 7	Iz	90		_						1						
Beam A IFASD 2009-130 Fig 7	2 H	05														
beam at root) Fig 8		83														-
Beam A IFASD 2009-130 (revised	ler															
Beam A IFASD 2009-130 (revised	i b	80					-			-						
beam at root) Fig 8	e e															
to ETW model art adaptor		75														
Beam B IFASD 2009-130 Fig 10 - att.		73														
Beam C IFASD 2009-130 Fig 10 - att.		~														
to ETW model art adaptor		70			т1.			Bea								
			T1	T2	BC2	Exp1	TET	m	P1	P2	P3	P4	P5	P6	P7	P8
		Series1	86.02	88.04	87.78	80.36	86.48	78.64	89	90.44	82.91	84.32	86.06	82.24	84.32	83.67

Plan of action for structural dynamic model

 Use analytical mode shapes
Use experimental frequencies for 1st 4 Bending modes & 1st Torsion
Use analytical frequencies for additional 5 modes

nucy, mz	400 300 200						
anhais	200 100 0						
	1st Be	ndines 2nd P	endines 3rd P	endines	rorsion Ath	Bendins	0
		- Fyn	erimen	t 🗖 Δ	nalweie		

		Analytical Frequency	Experimental Frequency
Mode #	Description	(Hz)	(Hz)
1	1st Bending	26.54	26
2	2nd Bending	86.02	78.6
3	1st Fore-Aft	156.94	
4	3rd Bending	189.31	166.2
5	1st Torsion	272.86	265.8
6	4th Bending	321.77	234.6
7	2nd Fore-Aft	422.98	
8	2nd Torsion	450.51	
9	5th Bending	496.68	
10	3rd Torsion	622.41	

Reduced node set available for modal splining

Flat Plate with 65 nodes

Associated grid points and 1st 10 mode shapes are on AePW website

Follow on plan_version 1

- Generate NASTRAN beam model to match Aachen Timoshenko beam model that has been tuned to the experimental frequencies
- Update hexahedral-based FEM to incorporate instrumentation weight and balance boundary condition
- Assess goodness of updated FEM relative to experimental data
- Provide updated modes and frequencies for participant consideration as extended test case

Follow on plan_version 2 July 2, 2011 (following meeting at RTA)

- Document and distribute for consideration and information:
 - Experimental data sets pertinent to the structural dynamic of the HIRENASD (for example Ground vibration test data? Stiffness test data?)
 - That we have in hand
 - That could possibly be made available
 - Analytical and computational models of the structural dynamics (i.e. FEMs and beams)
 - That we have in hand
 - That could possibly be made available
- Telecon July 15, 1430 GMT to discuss status and develop plan going forward for the structural dynamics representation

GRIDS

Gridding Guidelines for 1st AePW (AePW1)

For the current workshop, a sequence of coarse, medium and fine grids are required for each configuration and the guidelines can be summarized as follows:

- 1. RSW initial spacing normal to all viscous walls (Re = 4M based on Cref = 24")
 - a. Coarse: y⁺ ~ 1.0, dy = 0.000158"
 - b. Medium: y⁺ ~ 2/3, dy = 0.000105"
 - c. Fine: $y^+ \sim 4/9$, dy = 0.000070"
- 2. BSCW initial spacing normal to all walls (Re = 4.5M based on Cref = 16")
 - a. Coarse: $y^+ \sim 1.0$, dy = 0.000094"
 - b. Medium: y⁺ ~ 2/3, dy = 0.000063"
 - c. Fine: y⁺ ~ 4/9, dy = 0.000042"
- 3. HIRENASD wing initial spacing normal to all walls (Re = 23.5M based on $C_{ref} = 0.3445$ meter) Note: Same grids to be used for Re = 7M and Re = 23.5M cases.
 - a. Coarse: $y^+ \sim 1.0$, dy = 4.40961e-7 meter
 - b. Medium: y⁺ ~ 2/3, dy = 2.93973e-7 meter
 - c. Fine: y⁺ ~ 4/9, dy = 1.95982e-7 meter
- 4. Normal growth rate for cells in boundary layer region < 1.25
- Structured grids will have at least 2 cell layers of constant spacing normal to viscous walls.
- 6. Farfield will be located at ~100 cref for all grids.
- 7. Local spacings on medium grid:
 - a. Chordwise spacing for wing leading and trailing edges ~0.1% local chord
 - b. Wing spanwise spacing at root and at tip ~0.1% local semispan
 - c. Cell size near fuselage nose and aftbody ~2% cref
- Wing trailing edge: minimum 4, 6 and 9 cells for coarse, medium and fine grids, respectively.
- 9. Grid family:
 - a. Medium mesh representative of current engineering practice
 - b. Maintain a parametric family of uniformly refined grids in sequence
 - c. Grid size to grow ~3X for each level of refinement [Structured 1.5X in I,J,K directions]
 - d. Give consideration to multigridable dimensions on structured meshes
 - e. Sample sizes: Coarse: 3M, Medium: 10M, Fine 30M

dy refers to the normal spacing of the first cell at the viscous wall. Special effort is required to ensure that sequences of coarse, medium and fine meshes constitute a consistent "family" of grids suitable for a grid convergence study. This entails the preservation of mesh topology, stretching factors, and local variations in resolution as much as possible between grids of the same sequence. The mesh spacing specifications given for the medium grid are to be scaled appropriately for the coarse and fine grids. The given grid sizes are only estimates based on the objective that the medium grid should be representative of current engineering practice enabling a solution on mid-range computational hardware in reasonable turnaround time (i.e. considerably less than 24 hours). For unstructured grids designed for vertex-based solvers, the spacing refers to inter-nodal spacing and the resulting grid sizes are expected to be similar to the structured grid sizes. For unstructured grids for cell-centered solvers, the spacing refers to spacing between cell centers (or surface face centers), which corresponds approximately to a factor of 2 reduction in the overall number of surface points compared to the nodal solver case, for a triangular surface grid. For tetrahedral cell-centered solver mesh, the total number of grid points will be approximately 1/3 of the node based solver mesh.

Summary of AePW Grids

									GRID	ΤΥΡΙ	Ε							
					U	Instru	ucture	ed					Str	uctu	red	0	verse	t
Configuration			Nod	e Bas	ed			(Cell Ce	enter	ed			Hex				
		Mixe	d	Tet	trahe	dra		Mixe	d	Tet	trahe	dra	M	ultibl	ock			
	С	Μ	F	С	М	F	С	М	F	С	Μ	F	С	М	F	С	Μ	F
RSW													٦/					
	ν	V	ν	ν	ν	ν	0	0	0				V					
BSCW	0	0	0				0	0	0				0	0	0			
HIRENASD	v	V	V				0	0	0				۷			V		

 \mathbf{V} = Complete \mathbf{O} = In process \mathbf{O} = Desired

RSW grids from Eric

BSCW grids from Marilyn

Overview of the coarse, medium, and fine unstructured HIRENASD meshes

- **7** Coarse:
 - → 5676008 Total Nodes
 - 7 14378129 Total Elements
 - → Boundary layer cells:
 - → 34 prism layers
 - → Stretching factor 1.28

- → Medium:
 - → 16052763 Total Nodes
 - → 38871412 Total Elements
 - → Boundary layer cells:
 - **7** 40 prism layers
 - → Stretching factor 1.25

7 Fine:

- 7 46393528 Total Nodes
- 7 104678223 Total Elements
- → Boundary layer cells:
 - → 45 prism layers
 - → Stretching factor 1.23

M. Ritter, German Aerospace Centre - Göttingen

Aeroelastic Prediction Workshop Structured Grids

Thorsten Hansen ANSYS Germany thorsten.hansen@ansys.com

			M)			Z
						-

HIRENASD Overset Mesh with Chimera (Medium-Size Mesh)

Parameters	;	Un	its	Configuration									
		English	SI	RSW* (English units)	BSCW (English units)	HIRENASD (SI units)	HIRENASD (SI units)						
Mach number	Μ			0.826	0.848								
Reynolds number (based on ref chord)	Re _c			4.01E+06	4.49E+06								
Dynamic pressure	q	psf		108.65	204.20								
Velocity	V	ft/s		413.73	468.98								
Speed of sound	a	ft/s		501.18	552.93								
Static temperature	Tstat	deg F		37.12	87.91								
Density	ρ	slug/ft^3		0.001270	0.001857								
Ratio of specific heats	γ			1.132	1.116								
Dynamic viscosity	μ	slug/ft-s		2.620E-07	2.590E-07								
Prandtl number	Pr			0.78	0.67								
Test medium				R-12	R-134a	Nitrogen	Nitrogen						
Total pressure	Н	psf		410.48	757.31								
Static pressure	Р	psf		280.76	512.12								
Purity	Х	%			95								
Total temperature	Т	deg F		60.00	109.59								

AePW Website Info

- https://c3.ndc.nasa.gov/dashlink/projects/4
 7/
- Content is viewable by the world
- Website contributions limited to members
- Membership by request or commitment to the workshop
 <u>Send email to : AeroelasticPW@gmail.com</u>

Geometry (.iges) files

- NASA is responsible for preparing IGES files
 - Measured geometry used for all configurations
 - RSW and BSCW IGES files generated with and without splitter plates
 - HIRENASD with blunt trailing edge

Progress: Gridding

- Gridding guidelines and rules from Drag Prediction Workshop and High Lift Prediction Workshop will be adopted as the initial guidelines for AePW.
- Unstructured and structured grids will be constructed and made available to the participants.
- Grid generation by volunteers from 5 organizations

	RSW	BSCW	HIRENASD
Structured			
Unstructured			
Overset			

- Initial analyses prior to IFASD will be conducted using new grid family:
 - RSW and BSCW (NASA)
 - HIRENASD (FOI Sweden)

AePW-1 Tentative Agenda

- Workshop Overview
- Geometry, grid & structural model overview
- Experimental Data summary
- Output and the second of th
- Summarized Results with comparison to experiment
- Open forums
- Lessons learned
- Planning for reanalysis & publication
- Initial discussions on workshop path forward

Workshop participant submittals

•No formal AIAA papers

 Presentation & data submission only

•Requires 1 page letter of intent or abstract MRL and USF Contribution to AePW - 1

N. N. Thusiast_ Multielement Research Lab, Mail Stop 000, Happy Forks, VA 00000 email: m.n.thusiast@mrl.gov, (777) 777-7777

Soar N. Airt

University of Southern Flight, Mail Code 98765, Lofty Heights, TX 00000 email: s.n.air@usf.edu, (888) 888-8888

We intend to participate in the AePW-1, to be held April 21-22 2012 in Honolulu, HI. We plan to perform the following sets of computations:

- 1. Configuration 1 RSW , Steady Case, i. M=.825, α =2 deg \bullet Code: RANS-CFD-3D
 - Grid: Str-OnetoOne-C-v1 (supplied by AePW-1 committee)
 - Turbulence model: Menter SST
- 2. Configuration 1 RSW , Unsteady Case, i. M=.825, $\alpha\text{=}2$ deg, 10 Hz Same as above
- 3. Configuration 2 BSCW, Steady case, M=.85, α =5 deg, 10 Hz Same as above
- 4. Configuration 2 BSCW, Unteady case, M=.85, α =5 deg, 20 Hz Same as above
- 5. Configuration 3 HIRENASD Configuration, steady, M=.8, Re=7 million, α =1.5 deg
 - Code: RANS-CFD-3DAe
 - Grid: Str-OnetoOne-C-v1 (supplied by AePW-1 committee)
 - Turbulence model: S-A

We plan to submit our results electronically by the March 20, 2012 deadline to the AePW-1 committee.

RANS-CFD-3DAe is a Reynolds-averaged Navier-Stokes code developed by Et et al.,¹ widely used at the Multielement Research Lab. It is specifically formulated to work on three-element wing configurations. It uses point-matched grids, and is an upwind finite-volume structured code.

LES-CFD-3D is a large-eddy simulation code developed at the University of Southern Flight². It employs 6th order central differencing in space and 3rd order temporal differencing, along with 9th order explicit filtering.

References

1 Et, H., Cet, P., and Era L., "Description of RANS-CFD-3D," Journal of Codes, Vol. 6, No. 5, 1994, pp. 5–21.

2 Author, A. and Author B., "Description of LES-CFD-3D," Journal of Lengthy Papers, Vol. 9, No. 2, 2008, pp. 22–1021.

Corresponding Author. Senior Research Scientist, High Lift Branch.

[†] Professor and Chair, Dept. of Aeronautical Engineering.

Invitation to patticipate AePW email distribution list is being generated now

Go to https://c3.ndc.nasa.gov/dashlink/projects/47/ To sign up for Join Distribution Email distribution list \rightarrow Click List Participate Workshop participation
Click
AeroelasticPW@gma AePW

Participant Information Sources

- Organizing committee website:
 - <u>https://c3.ndc.nasa.gov/dashlink/projects/39/</u>
- Workshop website, open for public viewing, member postings:
 - <u>https://c3.ndc.nasa.gov/dashlink/projects/47/</u>
- Links to:
 - HIRENASD website (German and English languages)
 - <u>http://www.lufmech.rwth-aachen.de/HIRENASD/</u>
 - <u>https://heinrich.lufmech.rwth-aachen.de/index.php?lang=en&pg=home</u>
 - NASA White Paper reviewing experimental data sets
 - <u>http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100016316_20100172</u> 32.pdf
 - 2011 International Forum on Aeroelasticity & Structural Dynamics
 - <u>http://www.ifasd2011.com/</u>
 - Fun3D
 - <u>http://fun3d.larc.nasa.gov/</u>
 - Drag and High-Lift Prediction Workshops
 - http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/
 - http://hiliftpw.larc.nasa.gov/

- Levy, David W., Zickuhr, Tom, Vassberg, John, Agrawal, Shreekant, Wahls, Richard A., Pirzadeh, Shahyay, and Hemsch, Michael J., "Summary of data from the first AIAA CFD drag prediction workshop," AIAA-2002-0841, 40th AIAA Aerospace Sciences Meeting, Jan 14-17, 2002, Reno Nevada.
- Rumsey, C., Long, M., Stuever, R., and Wayman, T., "Summary of the First AIAA CFD High Lift Prediction Workshop," AIAA-2011-939,49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, Jan. 4-7, 2011
- Schuster, David, M, Scott, Robert C, Bartels, Robert E., Edwards, John W., and Bennett, Robert M., "A sample of NASA Langley unsteady pressure experiments for computational aerodynamics code evaluation," AIAA-2000-2602, AIAA Fluids 2000 Conference & Exhibit, June 19-22, 2000, Denver, Colorado.
- Ricketts, Rodney H., Sandford, Maynard C., Watson, Judith J. and Seidel, David A. Geometric and Structural Properties of a rectangular supercritical wing oscillated in pitch for measurement of unsteady transonic pressure distributions, NASA TM 85763, November 1983.
- Ricketts, Rodney R, Sanford, Maynard C., Seidel, David A., and Watson, Judith J., "Transonic pressure distributions on a rectangular supercritical wing oscillating in pitch," NASA TM-84616, March 1983.
- Ricketts, Rodney H., Sandford, Maynard C., Watson, Judith J. and Seidel, David A. "Subsonic and Transonic Unsteady and Steady-Pressure Measurements on a Rectangular Supercritical Wing Oscillated in Pitch", NASA TM 85765, August 1984.
- Bennett, Robert M., and Walker, Charlotte E., Computational Test Cases for a Rectangular Supercritical Wing Undergoing Pitching Oscillations, NASA TM 1999-209130, April 1999.
- Olsen, J J., Lambourne, N.C., et al, "Compendium of unsteady aerodynamic measurements," AGARD R- 702, ISBN 92-835-1430-0, August, 1982.
- Ruiz-Calavera, Luis, et al, "Verification and validation data for computational unsteady aerodynamics," RTO-TR-26, ISBN 92-837-1048-7, Report of the Applied Vehicle Technology Panel (AVT) Task Group AVT-010, October 2000.
- Schuster, David M., "Aerodynamic measurements on a large splitter plate for the NASA Langley Transonic Dynamics Tunnel," NASA TM-2001-210828, March 2001.
- Piatak, David J. and Cleckner, Craig S. Oscillating Turntable for the Measurement of Unsteady Aerodynamic Phenomenon, Journal of Aircraft, Vol 14, No. 1, Jan Feb 20
- Ballmann, J., Dafnis, A., Korsch, A., Buxel, C., Reimerdes, H-G, Brakhage, K-H, Olivier, H, Braun, C., Baars, A., and Boucke, A., "Experimental analysis of high Reynolds number aero-structural dynamics in ETW," AIAA 2008-841, 46th AIAA Aerospace Sciences Meeting & Exhibit, January 7-10, 2008, Reno, Nevada.
- Dafnis, A., Korsch, H., Buxel, C., Reimerdes, H.-G. "Dynamic Response of the HiReNASD Elastic Wing Model under Wind-Off and Wind-On Conditions", International Forum on Aeroelasticity and Structural Dynamics, IF-073, Stockholm. 2007.
- Ballmann, J., Boucke, A., Chen, B-H., Reimer, L., Behr, M., Dafnis, A., Buxel, C, Buesing, S., Reimerdes, H-G, Brakhage, K-H, Olivier, H., Kordt, M., Brink-Spalink, J., Theurich, F., and Buescher, A., "Aero-structural wind tunnel experiments with elastic wing models at high Reynolds numbers (HIRENASD-ASDMAD)", AIAA 2011-882, 49th AIAA Aerospace Sciences Meeting, January 4-7, 2011, Orlando, Florida.
- Reimer, L., Braun, C., Chen, B.-H. Ballmann, J. "Computational Aeroelastic Design and Analysis of the HiReNASD Wind Tunnel Wing Model and Tests", International Forum on Aeroelasticity and Structural Dynamics, IF-077, Stockholm. 2007
- Reimer, L., Ballmann, J., Behr, M. "Computational Ananlysis of High Reynolds Number Aerostructural Dynamics (HiReNASD) Experiments" IFASD-2009-132, International Forum on Aeroelasticity and Structural Dynamics, Seattle Washington.
- Neumann, Jens, and Ritter, Markus, "Steady and unsteady aeroelastic simulations of the HIRENASD wind tunnel experiment," IFASD-2009-132, International Forum on Aeroelasticity and Structural Dynamics, Seattle Washington.
- Neumann, Jens, Nitzsche, Jens, and Voss, Ralph, "Aeroelastic analysis by coupled non-linear time domain simulation," RTO-MP_AVT-154, 2008.
- Mavriplis, D.J., Vassberg, J.C., Tinoco, E.N., Mani, M., Brodersen, O.P. Eisfeld, B., Wahls, R.A., Morrison, J.H., Zuckuhr, T., Levy, D., and Murayama, M., "Grid quality and resolution issues from the drag prediction workshop series," AIAA 2008-930, presented at the 46th AIAA Aeroepace Sciences Meeting, Jan 2008, Reno, Nevada.

Data comparisons & processing

Comparison Data Matrix

	REQUIRED CALCULATIONS											
CONFIGURATIO N	GRID CONVERGENCE STUDIES	STEADY CALCULATIONS	DYNAMIC CALCULATIONS									
Steady-Rigid Cases (RSW, BSCW)	C _L , C _D , C _M vs. N- 2/3	 Mean Cp vs. x/c Means of C_L, C_D, C_M 										
Static-Aeroelastic Cases (HIRENASD)	C _L , C _D , C _M vs. N ^{-2/3}	 Mean C_p vs. x/c Vertical displacement vs. x/c Twist angle vs. x/c Means of C_L, C_D, C_M 										
Forced Oscillation Cases (all configurations)	TBD		 Magnitude and Phase of C_p vs. x/c at span stations corresponding to transducer locations Magnitude and Phase of C_L, C_D, C_M at excitation frequency Time history of Cp at each span station for 3 pressure transducer locations 									

An ascii template will be provided for submission of data

Ascii file specification

Wieseman Euler C	FD solution Wi	ng 1 case 1		Description: include software name, persons name, company
М	0.8			Mach
Q	100	psf		Dynamic pressure (options: psf or Pa)
aoa		degrees		angle of attack
rn	1.0E+10	ND		Reynolds number (based on reference chord)
oscfreq	999	HZ		oscillation frequency (if static case set to 999)
Tstatic	999	degK		Static temperature (options: degK or degR)
Pstatic	999	Pa		Static pressure
Ttotal	999	degK		Total temperature
Ptotal	999	Ра		Total pressure
Pr	999			Prandtl
gamma	1.4			gamma
rho	999	kg/m^3		density (options: kg/m^3 or slugs/ft^3)
vel	100	m/sec		velocity (options: m/sec or ft/sec)
Aerodynamic M	lodeling			
Turbulence Model	SST			text string
Flux Construction	ROE			text string
Flux Limiter	MINMOD			text string
Solver Method	RANS			options: RANS, URANS, LES, Euler, Doublet Lattice,
processing para	ameters			
ncycles	999			only for dynamic
ntpercycle	999			only for dynamic
ntimesteps	10000			only for dynamic
CPUtime		sec		
comment				can include comment on convergence if desired
post processing	information			For static and dynamic variables will be different
initialtimestep	10	sec		initial timestep for processing
finaltimestep	400	sec		
ncyclesprocessed	5			=(final-initial)*ntpercycle
grid information	ı			if experimental data - this section will not exist
gridname	Carols grid			if grid provided
gridtype	structured			options: structured, unstructured, overset, hybrid, adaptive
elementtype	mixed element			options: mixed element, fully tetrahedral or other
gridresolution	coarse			
gridsolver	node			options: node, cell
gridsize	1000000			N - number of nodes or cells depending on the gridsolver
AePW Provided Gr	N			options: Y, N or Yes or No, or if No - can omit from file
Loads Data				If experimental - whole block of data may not exist
CL	1			If static - results only in 2 columns
СМ	2			If dynamic -2nd column = real, 3rd column = imaginary
CD	3			
Pressure Data				
x/c	eta	СР	Flag	if unsteady data will be x/c, eta, Cpreal, Cpimag, Flag for whe

Summary of entries

	0 0 1	0 0 2	0 0 3 0 1	0 0 3 0 2	0 0 3 0 3	0 0 4	0 0 5 0 1	0 0 5 0 2	0 0 6	0 0 7	0 0 8 0 1	0 0 8 0 2	0 0 8 0 3	0 0 9	0 1 0	0 1 1	0 1 2 0 1	0 1 2 0 2	0 1 3 0 1	0 1 3 0 2	0 1 3 0 3	0 1 4 0 1	0 1 4 0 2	0 1 4 0 3	0 1 4 0 4	0 1 4 0 5	0 1 5	0 1 6	0 1 7 0 1	0 1 7 0 2	0 1 7 0 3	0 1 7 0 4	0 1 7 0 5	0 1 8	0 1 9	0 2 0 0 1	0 2 0 0 2	0 2 1 0 1	0 2 1 0 2
Code	C F X	C F D + +	O V E R	O V E R	O V E R	H F U N	F U N 3 D	N S U 3 D	F U N 3 D	T A U	T A U	T A U	T A U	P O W E R	E D G E	N S U 3 D	T A S	U P A C S	C F D +	C F D +	C F D +	O V E R	O V E R	O V E R	O V E R	O V E R	U S M 3 D	F U N 3 D	F U N 3 D	C F L 3 D	C F L 3 D	C F L 3 D	C F L 3 D	E L S A	N S M B	U S M 3 D	U S M 3 D	N S U 3 D	N S U 3 D
Туре	N	с	N	N	N	с	N	N	N	N	N	N	N	в	N	N	N	с	с	с	с	N	N	N	N	N	с	N	N	с	с	с	с	с	с	с	с	N	N
Grid	UX 9	UH 13	SX 3	SX 3	SX 3	UH 14	UH 6	UH 6	UT 5	UH 8	UH 7	UH 7	UH 7	CB 16	UH 8	UT 12	UH 15	SX 11	UT 5	UT 5	UX 9	SX 3	SX 3	SX 3	SX 3	SX 3	UT 4	UT 5	UН 6	SX 1	SX 1	SX 2	SX 1	SX 1	SX 10	UT 4	UT 4	UH 6	UH 6
Turb	S S T *	K E *	S A *	S A *	S A *	S A	S A	S A	S A	S A	S A	S S T	R S M	V L E S	S A	S A	S A *	S A *	S A	K E *	K E *	S A *	S A *	S A *	S S T	S A	S A	S A	S A	S S T	S A	S S T	S A	S A	S S T	K O	К О *	S A	S S T
Notes	Trans- Ition, limited config B		Brecket	brokets off on brecket- like grid	Config 8 grid etudy			Thin, no F	No polens	Brecket I	No config 8, no F	No config 8, no F	No config 8, no F	tion, polars on F, tracket	Thin, Bracket	Thin	Bracket		Used node- center grids	Used node- center grids		Brecket	HLLC, limited config 8	Central, no grid study, no	No config 8, Brecket	Only1 conditio n run			1	Thin	Thin	Thin				Nof	1	hin 1	hin, no rid tudy
N=node-centered C=cell-centered B=Boltzmann SX=Structured UX=Unstructured hex UT=Unstructured tet UH=Unstructured hybrid CB=Cartesian based									1=Str point-matched A 2=Str point-matched B 3=Str overset A 4=Unstr tet cell-center A 5=Unstr tet node-center A 6=Unstr hybrid (merged from 5) 7=Unstr hybrid node-center B 8=Unstr hybrid node-center B									SA=Spalart-Allmaras SST=Menter Shear Stress Transport KE=K-Epsilon RSM=Reynolds Stress Model KO=Wilcox K-Omega VLES=Very Large Eddy Simulation * = modified in some way																					

Hi Lift PW: Rumsey, Long, Stuever, and Wayman

Data processing slide goes here

Static data example

HIRENASD Frequency Responses at 2nd Bending Mode Frequency (78.9 Hz)

Cp(x)/displacement

Pressure coefficients at span station 4 due to displacement at location (15,1)

Data comparisons, a beginning

Ode-to-code comparisons:

- Start with DPW and HiLift Methods
 - Statistics of the process
 - Define variation
 - Define means
 - Determination of outlier data sets
 - Coefficients of variation
- Comparison methods relative to experimental data undetermined

DPW & HiLift Statistical analyses

- Focused on the code-to-code comparisons
- Treated the computations of a test case as a collective
- Used N-version testing in a statistical framework

A population mean estimate, $\hat{\mu}$, was estimated using the sample MEDIAN (The median is thought to provide a robust estimate when outliers are present)

A population standard deviation estimate, $\hat{\sigma}$, is calculated employing the sample mean, \overline{x}

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Scatter limits are calculated employing these estimates and a coverage factor, K, estimated for a uniform distribution ($K = \sqrt{3}$)

$$Limit = \hat{\mu} \pm K\hat{\sigma}$$

Coefficient of variation estimates, \hat{C}_{v} , were used to compare the variation of populations with different means. Employed to compare workshop-to-workshop and among different grid resolutions and among grid types (e.g. str, unstr)

$$\widehat{C}_{v} = \frac{\widehat{\sigma}}{\widehat{\mu}}$$

DPW & HiLift Statistical analyses

- Focused on the code-to-code comparisons
- Treated the computations of a test case as a collective
- Used N-version testing in a statistical framework

A population mean estimate, , was estimated using the sample MEDIAN OUTLIERS are identified as those submitted results that lie outside of the scatter limits

They identify potential significant CFD differences

The outlier data sets should be investigated to determine why that analysis result is an outlier

<u>Scatter limits</u> are calculated employing these estimates and a coverage factor, K, estimated for a uniform distribution ($K = \sqrt{3}$)

$$Limit = \hat{\mu} \pm K\hat{\sigma}$$

Coefficient of variation estimates, , were used to compare the variation of populations with different means. Employed to compare workshop-to-workshop and among different grid resolutions and among grid types (e.g. str, unstr)

SA entries, alpha=13°

Lift Coefficient

-Range of scatter limits and coefficient of variation decreased

- as grid was refined
- -Smaller variation (on M & F) for SA alone
- -Similar story for $\rm C_D$ and $\rm C_M$

63

Ref: Rumsey, Long, Stuever, and Wayman HiLift Prediction Workshop

Configuration reference information

Reference quantities

		RSW	BSCW	HIRENASD		
Reference chord	c _{ref}	24 inches	16 inches	0.3445 m		
Model span	b	48 inches	32 inches	1.28571 m		
Area	А	1152 in ²	512 in ²	0.3926 m ²		
Dynamic pressure	q	108.9 psf	200 psf	40.055 kPa (pt 159,132) 88.697 kPa (pt 271,250)		
Moment reference point, relative to axis		11.04 inches	4.8 inches	0.252 m		
system shown in Figs		0	0	-0.610 m		
2, 5 and 9		0	0	0		
Transfer function refere	ence quantity	Pitch angle	Vertical displacement (at x=1.24521m, y=0.87303m)			

Coordinate System, Reference Point (RSW)

Coordinate System, Reference Point (BSCW)

Coordinate System, Reference Point (HIRENASD)

Preliminary Analysis Results

Preliminary Analysis Progress & Results

- RSW: NASA- Pawel Chwalowski
- BSCW: NASA- Pawel Chwalowski
- HIRENASD: Technion & ISCFDC-Daniella Raveh, Yair Moryossef
- HIRENASD: FOI- Mats Dalenbring
- HIRENASD: DLR- Markus Ritter

Preliminary RSW Analysis Update

- Marilyn Smith generated unstructured grids (node based, mixed elements and tets only) using SolidMesh (coarse, medium, fine grid resolution). Thanks!
- Thorsten Hansen, Ansys Germany, generated structured hexahedral grid (coarse grid). Thanks!
- Pawel Chwalowski generated unstructured mixed elements grids with and without splitter plate and tunnel wall using VGRID.
- Steady and Unsteady runs are completed on a medium grid. Data needs to be post-processed!

Preliminary RSW Analysis Update Mach = 0.825, AoA = 2deg

As proposed for AePW:

With splitter plate! And viscous tunnel wall!

Preliminary BSCW Analysis Update

- Eric Blades generated unstructured grid (node based, mixed elements) using SolidMesh (medium resolution grid). Thanks!
- Pawel Chwalowski generated unstructured mixed elements grids using VGRID (medium resolution grid).
- First analysis attempt identified a discontinuity on the leading edge of the wing.
- · Iges file needed to be corrected and new grids constructed.
- The effect of the splitter plate has not been investigated.

Preliminary BSCW Analysis Update discontinuity on the leading edge Mach = 0.85, AoA = 5deg

Preliminary BSCW Analysis Update Unsteady Analysis Mach = 0.85, AoA = 5deg, f = 10Hz, A = 1deg

• HIRENASD:

 Steady state rigid body coefficients only available for preliminary results

HIRENASD Wing Analysis

- EZNSS (Elastic Zonal Navier-Stokes Solver)
 CFD Code by the Israeli CFD Center
 - Chimera overset grid
 - SA & k- ω TNT/SST turbulence models.
 - HLLC 3rd order MUSCL Scheme.
 - Full viscous scheme.
 - 1st/2nd order in time.

Technion - Israel Institute of Technology הטכניון – מכון טכנולוגי לישראל

Medium-Size Mesh

Flow Analysis

- Rigid Configuration at:
 - Mach 0.8
 - angle of attack 1.5°
 - Reynolds number 23 million
- Medium-size mesh (~12 million grid points)
- CL=0.3492 ; CD=0.0139 ; Cmy=-0.1893

Technion - Israel Institute of Technology הטכניון – מכון טכנולוגי לישראל

Mode Spline

Structural modes were mapped from finiteelement grid to the CFD surface grid

- Create and analyze coarse and fine meshes
- Perform aeroelastic analyses

Technion - Israel Institute of Technology הטכניון – מכון טכנולוגי לישראל

Presentation

Plans for an Aeroelastic Prediction Workshop

Jennifer Heeg, Josef Ballmann, Kumar Bhatia, Eric Blades, Alexander Boucke, Pawel Chwalowski, Guido Dietz, Earl Dowell, Jennifer Florance, Thorsten Hansen, Mori Mani, Dimitri Mavriplis, Boyd Perry, Markus Ritter, David Schuster, Marilyn Smith, Paul Taylor, Brent Whiting, and Carol Wieseman

AeroelasticPW@gmail.com

https://c3.ndc.nasa.gov/dashlink/projects/47/

15th International Forum on Aeroelasticity & Structural Dynamics June 26–30, 2011 Paris

Affiliation
Boeing Commercial Aircraft
Aachon University
Addient Oniversity
ATA Engineering, Inc.
Aachen University
NASA
European Transonic Windtunnel (ETW)
Duke University
Ϊ
NASA
ANSYS Germany GmbH
Boeing Research & Technology
University of Wyoming
NASA
Deutsches Zentrum für
NASA
Georgia Institute of Technology
Culfetream Aerospace
Boeing Research &
Technology
NASA

Acknowledgments

Funding of NASA participation, geometry generation & workshop organization NASA Subsonic Fixed Wing Program

Funding of Workshop organization NASA Engineering & Safety Center

HIRENASD Research Project Aachen University

HIRENASD Project Funding German Research Foundation (DFG)

Grid Generation Ansys, ATA, Georgia Tech, Technion University, ISCFDC, NASA

OUTLINE

- Overview
- Configurations
 - -RSW
 - BSCW
 - HIRENASD
- Participation

Objectives of AePW

Assess state-of-the-art Computational Aeroelasticity(CAe) methods as practical tools for the prediction of static and dynamic aeroelastic phenomena and responses on relevant geometries

- Perform comparative computational studies on selected test cases
- Identify errors & uncertainties in computational aeroelastic methods
- Identify gaps in existing aeroelastic databases
- Provide roadmap of path forward
 - Additional existing data sets?
 - New experimental data sets?
 - Analytical methods developments?

Guiding Principles

- Provide an <u>impartial</u> international <u>forum</u> for evaluating the <u>effectiveness of CAe</u> <u>methods</u>
- Promote **balanced participation** across academia, government labs, and industry
- Use common <u>public-domain</u> subject geometries, simple enough to permit <u>high-fidelity</u> <u>computations</u>
- <u>Provide</u> baseline <u>grids</u> and baseline <u>structural models</u> to encourage participation and help reduce variability of CAe results
- **Openly discuss** and identify areas needing **additional research** and development
- Conduct uncertainty quantification analyses of CAe results to <u>establish confidence levels</u> <u>in predictions</u>
- Schedule **open-forum sessions** to further engage interaction among all interested parties
- Maintain a **public-domain-accessible database** of geometries, grids, and results
- <u>Document</u> workshop findings; <u>disseminate</u> this information through publications and presentations

Building block approach to validation

Utilizing the classical considerations in aeroelasticity

- Fluid dynamics
- Structural dynamics
- Fluid/structure coupling

Validation Objective of 1st Workshop

Unsteady aerodynamic pressures due to forced modal oscillations

Future Workshops

- Directed by results of this workshop
- Directed by big-picture assessment of needs & interests

1st AePW to be held weekend before next year's AIAA SDM conference April 21-22, 2012

 Presentations by workshop participants

•No formal AIAA papers

 Prior commitment & data submission required for presentation

 Attendance & forum discussions open to all (separate registration from SDM conference)

Aeroelastic Prediction Workshop Schedule

- Identified organizing committee: Dec 1, 2010
- Data Release & Workshop Kickoff: IFASD 2011, Paris
- 10 months to perform computations
- Workshop: April 2012

Activity	FY10	FY11	FY12	FY13	
Form organizing committee					
Workshop kick-off		Δ	Kickoff at IFA	SD	
Config, grids, etc. available on-line					•
Perform analysis of selected config.					
Conduct 1 st Aeroelastic Prediction Workshop				Workshop at	2012 SDM
Update / improve CFD results / code(s)					
Perform comparisons, Statistical analyses					
Present conference papers					
Formulate AePW 2					

OUTLINE

- Overview
- Configurations
 - -RSW
 - BSCW
 - HIRENASD
- Participation

Configurations Selected

 Rectangular Supercritical Wing

 Benchmark Supercritical Wing

 High Reynolds number Aero-Structural Dynamics Model

Rectangular Supercritical Wing (RSW)

- Simple, rectangular wing
- Static and forced oscillation pitching motion

Known deficiencies:

- Splitter plate deficiencies
 - Small size
 - Located in the tunnel wall boundary layer (6 " off of the wall)
- Tunnel wall slots open

M=0.825, Re_c=4.0 million, test medium: R-12

- a) Steady Cases
 - i. $\alpha = 2^{\circ}$
 - ii. $\alpha = 4^{\circ}$
- b) Dynamic Cases: $\alpha = 2^{\circ}$, $\theta = 1.0^{\circ}$
 - i. f = 10 Hz
 - ii. f = 20 Hz

RSW Model Layout and Airfoil

Experimental data acquired in R-12 @ $Re_c = 4$ million, Mach=0.825

Benchmark Supercritical Wing (BSCW)

- Simple, rectangular wing
- Data acquired under mixed attached/separated flow conditions

Known deficiencies:

- Limited number of pressure transducers in experimental data
- Limited number of discrete frequencies of oscillation
- Mach number is at edge of acceptable range for quality pressure data with splitter plate

- M=0.85, Re_c=4.49 million, test medium: R-134a
 - a) Steady Case
 - i. $\alpha = 5^{\circ}$
 - b) Dynamic Cases
 - i. $\alpha = 5^{\circ}, \theta = 1^{\circ}, f = 1 \text{ Hz}$
 - ii. $\alpha = 5^{\circ}, \theta = 1^{\circ}, f = 10 \text{ Hz}$

BSCW Geometry and Test Configuration

Figure 1. Planform of model. Dimensions are in inches.

Figure 2. NASA SC(2)-0414 airfoil.

Experimental data acquired in R-134a @ q = 200 psf, Re_c = 4.49 million, Mach=0.85

HIRENASD

- 3-D aeroelastic wing with generic fuselage model
- Steady and forced (structural resonance) oscillation testing
- Data:
 - Balance forces for integrated load comparisons,
 - Mean and fluctuating pressure data
 - Surface deformation data from optical and strain measurements during testing
- Known deficiencies:
 - Limited deflection data
 - Only excited at natural frequencies

M = 0.80, test medium: nitrogen

- a) Steady (Static Aeroelastic) Cases
 - i. Re = 7.0 million, $\alpha = 1.5^{\circ}$
 - ii. Re = 23.5 million, α = -1.34°
- b) Dynamic Cases: forced oscillation at 2nd
 Bending mode frequency
 - i. Re = 7.0 million, $\alpha = 1.5^{\circ}$
 - ii. Re = 23.5 million, α = -1.34°

Pressure Sensors:

259 unsteady pressure sensors distributed at 7 span stations

AePW Dataset Selection

- Rectangular Supercritical Wing: (M=0.825, Re_c=4.0 million, test medium: R-12)
 - Steady Cases
 - α = 2°
 - α = 4°
 - Dynamic Cases: forced pitching oscillation ($\alpha = 2^\circ$, $\theta = 1.0^\circ$)
 - f = 10 Hz.
 - f = 20 Hz.
- Benchmark SuperCritical Wing (Semi-Blind) (M=0.85, Re_c=4.49 million, test medium: R-134a)
 - Steady Case
 - $\alpha = 5^{\circ}$
 - Dynamic Cases: forced pitching oscillation ($\alpha = 5^\circ$, $\theta = 1^\circ$)
 - f = 1 Hz
 - f = 10 Hz
- HIRENASD (M = 0.80, test medium: nitrogen)
 - Steady Cases
 - $Re_c = 7.0$ million, $\alpha = 1.5^\circ$, static aeroelastic
 - Re_c = 23.5 million, α = -1.34°, static aeroelastic
 - Dynamic Cases: forced oscillation at 2nd Bending mode frequency
 - $\text{Re}_{c} = 7.0 \text{ million}, \alpha = 1.5^{\circ}, f = 78.9 \text{ Hz}$
 - $Re_c = 23.5$ million, $\alpha = -1.34^\circ$, f=80.3 Hz

OUTLINE

- Overview
- Configurations
 - -RSW
 - BSCW
 - HIRENASD
- Participation
 - Invitation to participate
 - Data provided to participants
 - Data expected from participants

Invitation to participate

AePW email address:

AeroelasticPW@gmail.com

Participant Information Sources

- Workshop website: with downloads of grids, geometry, structural model, etc
 - <u>https://c3.ndc.nasa.gov/dashlink/projects/47/</u>
- Links to:
 - HIRENASD website (German and English languages)
 - <u>http://www.lufmech.rwth-aachen.de/HIRENASD/</u>
 - https://heinrich.lufmech.rwth-aachen.de/index.php?lang=en&pg=home
 - Drag and High-Lift Prediction Workshops
 - <u>http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/</u>
 - http://hiliftpw.larc.nasa.gov/

Summary of AePW Grids

		GRID TYPE																
		Unstructured Structured Overset										t						
Configuration	Node Based Cell Centered Hex					Hex												
		Mixe	d	Tet	trahe	nedra Mixed		d	Tetrahedra		Multiblock							
	С	Μ	F	С	Μ	F	С	М	F	С	М	F	С	Μ	F	С	М	F
RSW	v	V	V	٧	٧	٧	0	0	0				٧					
BSCW	o	\odot	\odot				0	0	0				0	0	0			
HIRENASD	٧	٧	v				0	0	0				٧			٧		

- V = Complete
- \odot = In process
- \circ = Desired

Overview of the coarse, medium, and fine unstructured HIRENASD meshes

- → 16052763 Total Nodes
 - → 38871412 Total Elements
 - → Boundary layer cells:
 - **7** 40 prism layers
 - → Stretching factor 1.25

Fine:

- 7 46393528 Total Nodes
- 7 104678223 Total Elements
- → Boundary layer cells:
 - → 45 prism layers
 - → Stretching factor 1.23

5676008 Total Nodes

Boundary layer cells:

14378129 Total Elements

34 prism layers

Stretching factor 1.28

Coarse:

7

7

7

7

7

M. Ritter, German Aerospace Centre - Göttingen

Aeroelastic Prediction Workshop Structured Grids

Thorsten Hansen ANSYS Germany thorsten.hansen@ansys.com

	6		
			Z

HIRENASD Overset Mesh with Chimera (Medium-Size Mesh)

הטכניון – מכון טכנולוגי לישראל

Comparison Data Matrix

	REQUIRED CALCULATIONS							
CONFIGURATION	GRID CONVERGENCE STUDIES	STEADY CALCULATIONS	DYNAMIC CALCULATIONS					
Steady-Rigid Cases (RSW, BSCW)	C _L , C _D , C _M vs. N-2/3	 Mean Cp vs. x/c Means of C_L, C_D, C_M 						
Static-Aeroelastic Cases (HIRENASD)	C _L , C _D , C _M vs. N ^{-2/3}	 Mean C_p vs. x/c Vertical displacement vs. x/c Twist angle vs. x/c Means of C_L, C_D, C_M 						
Forced Oscillation Cases (all configurations)	TBD		 Magnitude and Phase of C_p vs. x/c at span stations corresponding to transducer locations Magnitude and Phase of C_L, C_D, C_M at excitation frequency Time history of Cp at each span station for 3 pressure transducer locations 					

An ascii template will be provided for submission of data

HIRENASD Frequency Responses at 2nd Bending Mode Frequency (78.9 Hz)

Cp(x)/displacement

Pressure coefficients at span station 4 due to displacement at location (15,1)

We are actively seeking participation from the technical community

We look forward to working with you to better define and advance the state of the art in computational aeroelasticity

Big picture stuff that I'm working on...

Jen-We need the equivalent

- Wakes in pr**Stide** for AePW: Wake/boundary layer merging Steamline **Grig W phenomena**: ٠
- •
- ٠
- Separated flow ansionic flow: terminal shock strength varying • ٠
- Wing-tip vo Aittached flow Laminar/turbulent transition • •

Shock-Separated flow

Shock-boundary layer interaction

Buffeting flow of high-lift flows is challenging

Vortical flow

possible boundary layer separation wake / boundary layer merging wake in pressure gradient streamline curvature possible shock/ boundary layer interaction transition region transition region transition separated cove flow region possible unsteady flow possible shear layer transition possible laminar bubble possible boundary layer separation

Rumsey, Long, Stuever, and Wayma

CFD Flow modeling progress: 1992 Assessment

AGARD CONFERENCE PROCEEDINGS 507

Transonic Unsteady Aerodynamics and Aeroelasticity

TECHNICAL EVALUATION REPORT ON 1991 SPECIALISTS'MEETING ON "TRANSONIC UNSTEADY AERODYNAMICS AND AEROELASTICITY"

> by John W. Edwards Unsteady Aerodynamics Branch NASA Langley Research Center Hampton, Virginia 23665 USA

Figure 1. CFD Flow Modeling Levels

1992 Assessment contd Configuration complexity

Figure 2. Configuration Modeling Capability for Aeroelastic Analysis

AGARD CONFERENCE PROCEEDINGS 507

Transonic Unsteady Aerodynamics and Aeroelasticity

March 1992

TECHNICAL EVALUATION REPORT ON 1991 SPECIALISTS'MEETING ON "TRANSONIC UNSTEADY AERODYNAMICS AND AEROELASTICITY"

> by John W. Edwards Unsteady Aerodynamics Branch NASA Langley Research Center Hampton, Virginia 23665 USA

2008 Assessment

- Classification of problem areas delineated by fluid/structure dynamic complexity
 - Aerodynamic characteristics
 - Attached / separated flow
 - Vortical flow
 - Shock wave dominated separation
 - Shock-boundary layer interaction
 - Structural characteristics
 - Linear
 - Nonlinear
 - Large amplitude geometric nonlinearities
 - Material nonlinearities
 - Transient or morphing
- CA Analysis Validation
 - Methods should be demonstrated to have acceptable accuracy for classification levels for which they can be recommended. Accomplish through systematic computations. Test cases selected from available data bases and published results compared at organized meetings
- Uncertainty in Aeroelastic model testing
 - Facility variability
 - Test medium effects
2008 Assessment contd Perceived Deficiencies

- Naturally unsteady flows
- Separated flows & separation onset flows: nonlinearity of the separation often triggers unsteadiness in the flow
- "Convective and diffusive nature of the flow" may not be captured by the algorithms currently implemented; the approach of adapting steady flow methods to unsteady flow analysis may be fundamentally flawed
- Steady flow algorithms are optimized to converge to a steady state without adversely affecting the mean flow prediction. Thus, these algorithms quickly dmap transient oscillations, whether numerical or physical
- Forced oscillations involve continuous influx of perturbations. Thus, this may not be the best approach to validation of critical fluid dynamic characteristics

2008 Assessment contd

- Forced oscillation problems:
 - Result in bounded periodic amplitude and frequency responses that can be used to quantitatively evaluate the methods
 - Thus, logical V&V candidates

History of Computational Aeroelasticity

- Strip Theory & Typical sections
- Panel Methods
- TSD
- Euler methods
- Viscous effects
- Thin layer Navier Stokes
- Navier Stokes- RANS
- Close-coupled analyses
- Navier Stokes- LES, DES

A nice way to track progress in Computational AE might be a timeline of AGARD 445.6 analyses

