Large ScaleVehicle Performance Monitoring in Distributed Environments

University of Maryland Baltimore County & Agnik, LLC

www.cs.umbc.edu/~hillol http://www.agnik.com

Road Map

- Distributed Data Mining: An Overview
 - Algorithms
 - Commercial Applications
- Anomaly Detection from Multi-Party Data
- Vehicle Performance Data Mining and Monitoring
- Summary

Data Mining and Distributed Data Mining

- Data Mining: Scalable analysis of data by paying careful attention to the resources:
 - computing
 - communication
 - storage
 - human-computer interaction.

• Distributed Data Mining (DDM): Mining data using distributed resources.

Data Mining for Distributed and Ubiquitous Environments: Applications

Mining Large Databases from distributed sites

Grid data mining in Earth Science, Astronomy, Counter-terrorism, Bioinformatics

Monitoring Multiple time critical data streams

- Monitoring vehicle data streams in real-time
- Monitoring physiological data streams

Analyzing data in Lightweight Sensor Networks and Mobile devices

- Limited network bandwidth
- Limited power supply
- Preserving privacy
 - Security/Safety related applications

Peer-to-peer data mining

Large decentralized asynchronous environments

DDM Algorithms: Some Examples

- Distributed Primitive Computation
 - Probabilistic techniques
 - Deterministic exact techniques
 - Deterministic approximation techniques
- Anomaly Detection
 - Principal component analysis based approach
 - Optimization-based approach, distributed linear programming

DDM Algorithm Design: Methodology

- Distributed environment G=(V, E)
- Each node contains some data O_k
 - Same schema
 - Different schemas
- Compute function f(V)
- Construct a decomposed representation of f(V) where f(V) can be computed from locally computed functions p(O_k)
- Correctness and Scalability

Distributed Randomized Similarity Search

- Similarity computation and inner products
- Node 1 computes Z_{1,k}
 - $\Box \quad Z_{1k} = A1.J_1 + .. + An.J_n$
 - □ $J_i \in \{+1, -1\}$ with uniform probability
- Node 2 calculates $Z_{2,k}$ $Z_{2k}=B1.J_1+..+Bn.J_n$
- Compute z_{1,k}.z_{2,k} for a few times and take the average

Distributed PCA & Max Sum-Square Computation

- Principal Component computation in heterogeneous environment
- Can be reduced to the distributed sum-square computation

Problem

- Site A has $a_1 \dots a_n \in R$, Site B has $b_1 \dots b_n \in R$
- Sites must compute

i*=Argmax {
$$c_1 = (a_1 + b_1)^2$$
, ..., $c_n = (a_n + b_n)^2$ }

Distributed Max Sum Square

The Algorithm

- (1) Site A selects max of a_{iA} 's and sends < a_{iA}, iA> to Site B
 (2) Site B selects max of b_{iB} 's and sends < b_{iB}, iB> to Site A
- Site A receives the message and replies with $\langle a_{iB} \rangle$. Site B replies with $\langle b_{iA} \rangle$
- Both sites now have a_{iA} , a_{iB} , b_{iA} , b_{iB} and the corresponding indices. If iA = iB terminate and return iA.
- Otherwise

(1)Site A replaces a_{iA} with $(a_{iA} + b_{iA})/2$ and a_{iB} with $(a_{iB} + b_{iB})/2$ (2)Site B replaces b_{iA} and b_{iB} similarly

Illustration

- Communications Cost Analysis:
 - Average case O(log n)
 - Worst case O(n)
 - Synchronous

Distributed Classifier Learning & Outlier Detection

- Linear classifier construction and outlier detection
- Can be posed as linear programming problem. Examples:
 - Minimizing the error
 - Minimizing the entropy objective function by taking out the outliers
- Distributed linear programming
- Distributed simplex algorithm

Distributed Simplex

- Simplex rely upon pivot computations
- Pivot computation can be reduced to distributed min computation

Communication Cost vs. Network Size

- Number of nodes in the network is varied from 10 to 500 nodes
- Number of variables in a constraint equation is kept constant at 35

Communication Cost vs. Input size

- Graph shows results for a 50 node network with 4 different topologies with number of edges varying from 50 to 200
- The number of constraints is varied from 10 to 200

Communication Cost vs. Attributes per Constraint

• Graph shows results for a 50 node network with 4 different topologies with number of edges varying from 50 to 200

Some References: P2P and Distributed Data Mining

- H. Kargupta and K. Sivakumar, (2004) Existential Pleasures of Distributed Data Mining. Data Mining: Next Generation Challenges and Future Directions. Editors: H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha. AAAI/MIT Press.
- H. Dutta, C. Giannella, K. Borne and H. Kargupta (2007). Distributed Top-K Outlier Detection in Astronomy Catalogs using the DEMAC system. Proceedings of SIAM International Conference on Data Mining.
- K. Das, K. Bhaduri, and H. Kargupta. (2008). An Ordinal Framework for Identifying Significant Inner Product Elements in a Peer-to-Peer Network. *IEEE Transactions on Knowledge and Data Engineering*, volume 19, number 3.
- J. Branch, B. Szymanski, R. Wolff, C. Gianella, H. Kargupta. (2006). In-Network Outlier Detection in Wireless Sensor Networks. Proceedings of the 26th International Conference on Distributed Systems, 2006.
- R. Wolff, K. Bhaduri, H. Kargupta. (2009). A Generic Local Algorithm for Mining Data Streams in Large Distributed Systems. *IEEE Transactions on Knowledge and Data Engineering*. Volume 21, Issue 4, April 2009. Pages 465-478.

Commercial Applications

Commercial Products from Agnik

- DIA: Anomalous event detection from distributed data sources (US Missile Defense Agency)
- PURSUIT: Network threat detection from multi-party privacy-sensitive distributed data (US Department of Homeland Security)
- MineFleet: Real-time vehicle performance monitoring for commercial fleets (*Commercial system adopted by many organizations*)

Academic Projects at UMBC

- PADMINI: Distributed data mining from NASA Virtual Observatories (*NASA*)
- Green Flights, Aircraft Health, and Distributed Data Stream Mining (2008 *IBM Innovation Award*)

Private & Secure Data Mining from Multi-Party Distributed Data

- Compute global patterns without direct access to the multi-party raw distributed data
- Minimize communication cost
- Must come with provably correct guarantees with respect to a given privacy model
- Must be scalable with respect to
 - number of data sites
 - size of the data
- Privacy-preserving data mining
 - Blends in ``pattern-preserving'' transformations with data analysis

How PURSUIT Works for the User

- Need to have your own sensor such as SNORT, MINDS
- Download PURSUIT plug-in for the sensor and install
- PURSUIT plug-in offers
 - A stand-alone interface for processing your alerts from the sensor and cross-domain analysis
 - Web account for detailed cross-domain statistics
 - Optional distributed collaboration management module for managing the threats and archiving forensics

PURSUIT Web Service

MineFleet®:Onboard Vehicle Performance Data Mining System

MineFleet Architecture

Need for MineFleet

Reduce your fuel consumption

Billions of trucks and cars world-wide.

- Poor fuel economy results from malfunctioning parts or bad driving
- Mechanics inspect a vehicle only when
 there are some obvious drivability problem
- Bad driving is expensive
- Lack of vehicle behavior benchmarking tools--- poor depreciation analysis
- Emerging need for "greener" vehicles

Bad driving costs money---fuel, brake shoe, insurance, la w-suits

> Reduce your carbon footprint

Fuel Subsystem: Sample Attrib

Fuel Subsystem

- Air Fuel Ratio
- Fuel Level Sensor (%)
- Fuel System Status Bank 1 [Categ. Attrib.]
- Oxygen Sensor Bank 1 Sensor 1 [mV]
- Oxygen Sensor Bank 1 Sensor 2 [mV]
- Oxygen Sensor Bank 2 Sensor 1 [mV]
- Oxygen Sensor Bank 2 Sensor 2 [mV]
- Long Term Fuel Trim Bank 1 [%]
- Short Term Fuel Trim Bank 1[%]
- Idle Air Control Motor Position
- Injector Pulse Width #1 (msec)
- Manifold Absolute Pressure (Hg)
- Mass Air Flow Sensor 1(MAF) (lbs/min)

Operating Condition

- Barometric Pressure
- Calculated Engine Load(%)
- Engine Coolant Temperature (°F)
- Engine Speed (RPM)
- Engine Torque
- Intake Air Temperature (IAT) (°F)
- Start Up Engine Coolant Temp. (°F)
- Start Up Intake Air Temperature (°F)
- Throttle Position Sensor (%)
- Throttle Position Sensor (degree)
- Vehicle Speed (Miles/Hour)
- Odometer (Miles)

MineFleet for Advanced Onboard Data Analysis

- Advanced trend analysis, machine learning, data mining and anomaly detection algorithms for onboard statistical analysis and modeling.
- Minimizes wireless data transmission.

Data from EPA

- Rapid Acceleration and Braking: Aggressive driving (speeding, rapid acceleration and hard braking) wastes gas. It can lower your gas mileage by 33 percent at highway speeds and by 5 percent around town. You may save in between 5 to 33 percent in fuel economy by minimizing aggressive driving. (Savings of \$0.12-\$0.76/gallon)
- **Speeding:** Just by observing the speed limit you may save in between 7 to 23 percent in fuel economy. (Savings of \$0.16-\$0.53/gallon)

• **Idling:** Idling reduces the overall gas mileage; so minimize idling.

Fuel Economy: Impact of Driver Behavior

- Quantify the effect of driver behavior on fuel consumption and train drivers to prevent inefficient driving practices.
 - Effect of speeding on fuel economy
 - Effect of acceleration on fuel economy
 - Effect of braking on fuel economy
 - Effect of idling on fuel economy
 - Many more....

Screen Shot: Fuel Consumption Summary

Panel

_ @ 🗙

M Analytic Visualization Browser - Van 37

Cumulative Vehicle Data Analysis	Summary	
Diagnostic Trouble Codes Fuel Economy Summary	Average Fuel Economy	The average fuel economy for this vehicle from the recorded data is 15.6 miles per gallon.
Fuel Economy Prediction Feature Histograms Fuel Map Subsystem Parameter Interaction	Ideal Speed for Best Fuel Economy	The best fuel economy for this vehicle was obtained at speeds between 55 and 65 Miles per Hour (MPH).
Vehicle Health Tests Benchmark Analysis Compare With Benchmark	Ideal Acceleration for Best Fuel Economy	The best fuel economy for this vehicle was obtained at an acceleration between 0 and 1 Feet per Second Squared (ft/sec2).
Shift Analysis Select Shift	Ideal Engine Speed for Best Fuel Economy	The best fuel economy for this vehicle was obtained at engine speeds between 1500 and 2000 Rotations per Minute (RPM).
	Predicted Fuel Economy at Ideal Speed	The predicted fuel economy for this vehicle driven at speeds between 55 and 65 Miles per Hour (MPH) is approximately 19.3 miles per gallon.
	Effect of Idling	This vehicle spends 36.9% of its time idling. Reducing the percentage of time spent idling by half will improve the fuel economy from approximately 15.3 to 15.9 miles per gallon. <u>Calculate Potential Savings</u>
By start M MineFleet	M MineFleet M Analytic Visualization 🔌	agnik.com Webmail Type to search 🔪 🖬 🖓 👘 🚺 an ilz
Copyright 2009 Agnik, LLC		

Data from EPA

- Faulty Oxygen Sensors: Fixing a faulty oxygen sensor, can improve your fuel economy by as much as 40%. (Savings of \$0.9/gallon)
- **Basic Maintenance:** Fixing a car that is out of tune or has failed an emissions test can improve its gas mileage by an average of 4 percent. (Savings of \$0.09/gallon)
- Excess Weight: Removing excess weight may have considerable impact on the fuel economy. An extra 100 pounds in your vehicle could reduce your fuel economy by up to 2%. (Savings of \$0.02-\$0.05/gallon per 100 lbs)

Fuel Economy: Impact of Vehicle Condition

- Quantify the effect of vehicle condition on fuel consumption. Example:
 - Effect of air-intake subsystem behavior on fuel economy
 - Effect of fuel subsystem on fuel economy. For example, MineFleet can quantify how much your fuel economy is hurting because of a bad oxygen sensor.

M Fuel Savings Calculator				
Enter the following information to estimate savings by changing the behavior of feature Oxygen - Bank 2 - Sensor 2.				
This vehicle is driven approximately 50	miles driven per day 💌			
Fuel is estimated to cost approximately 2.89 per gallon				
Sav	vings per day: \$1.67			
Savin	gs per month: \$50.66			
Savings per year: \$607.91				
	Compute Close			

Fuel Economy: Predictive Modeling

- Build a predictive model of the fuel economy as a function of vehicle and driving parameters for optimizing the performance
- Predictive modeling allows detecting the effect of any specific vehicle or driver parameter on fuel economy.

Screen Shot: Advanced Predictive Fuel Consumption Optimization

Predictive Modeling for Vehicle Health Analysis

- Detect problems using model and data driven fault detection tests well before DTC code shows up.
- Auto-generate alerts when MineFleet detects unusual behavior of a subsystem and access the data producing this behavior.
- Manage vehicle data and performance history.
- Track maintenance and vehicle performance history.

Screen Shots: Vehicle Health Management

Detailed description of a specific test that the vehicle passed

Screen Shot: Fuel Economy Benchmarking

M Analytic Visualization Browser - Van 37

Year:

Make:

Model:

🛃 start

Benchmark Fuel Economy Summary Cumulative Vehicle Data Analysis Diagnostic Trouble Codes The best fuel economy for this vehicle was obtained at speeds between Fuel Economy **Ideal Speed for Best Fuel Economy** 55 and 65 Miles per Hour (MPH). Summarv Historical Fuel Economy Fuel Economy Prediction According to the Benchmark Vehicle, th feature Oxygen - Bank 1 - Sensor Feature Histograms 2 appears to be operating outside of the normal parameters, which is Fuel Map effecting fuel economy. Subsystem Parameter Interaction Vehicle Health Tests Oxygen - Bank 1 - Sensor 2 It appears that if this vehicle were operating within the specified benchmark behavior, it would have a positive effect on the fuel economy. The fuel economy would rise from 15.7 to 16.7 Benchmark Analysis Compare With Benchmark Calculate Potential Savings Close Benchmark Shift Analysis According to the Benchmark Vehicle, th feature Calculated engine load Select Shift appears to be operating outside of the normal parameters, which is effecting fuel economy. Benchmark Vehicle Vehicle Name: Van 17 It appears that if this vehicle were operating within the specified Calculated engine load 1998 benchmark behavior, it would have a positive effect on the fuel economy. Ford The fuel economy would rise from 15.7 to 16.3 F150 Calculate Potential Savings According to the Benchmark Vehicle, th feature Engine speed appears to be operating outside of the normal parameters, which is effecting fuel economy. **Engine speed** It appears that if this vehicle were operating within the specified benchmark behavior, it would have a positive effect on the fuel economy. The fuel economy would rise from 15.7 to 16.0 Calculate Potential Savings

Summary of the fuel economy benchmarking analysis

Ð

Onboard Emissions Analysis in MineFleet

- Quantitative assessment of vehicle emissions, including CO2, CO, NOx, and hydrocarbons.
- MineFleet Green ScoringTM
- How the emission patterns are correlated with environmental and vehicle performance parameters

MineFleet Web Portal

Vehicles and Green House Gases (GHG)

- Transportation activities are responsible for approximately 25% to 30% of total U.S. GHG emissions
- On-highway commercial truck market accounting for over 45% of transportation GHG

Emissions & Airlines Industry

- A Boeing 747 uses approximately 1 gallon of fuel every second.
- A flight from Washington DC to Los Angeles emits about 726 pounds of CO₂.

• Aircrafts generate large volume of data even from short flights (e.g. 10MB from an hour long flight depending upon the type of aircraft)

Summary

- Distributed data mining
 - Decade-long literature offering many synchronous and asynchronous distributed data mining algorithms
 - Distributed anomaly detection from vehicle performance data streams
 - Correctness, Efficiency, Scalability: Centralized vs DDM

Announcement

 National Science Foundation Data Mining Summit on Energy Crisis, Greenhouse Emission, and Transportation Challenges

http://www.kd2u.org/NGDM09/ Baltimore, Oct 1—Oct 3, 2009

Resources

- DDMWiki (http://www.umbc.edu/ddm/wiki/)
- DDMBib (http://www.cs.umbc.edu/~hillol/DDMBIB/)
- Recently formed nonprofit organization: Association for Knowledge Discovery in Distributed and Ubiquitous (KDD&U) Environments (www.kd2u.org)