Design for Supportability

Includes

Integrated Vehicle Health Management Integrated System Health Management

Mike Battaglia 202-358-4658

From the President's Talking Points at KSC April 15, 2010

- Make strategic investments to develop critical knowledge, technologies, and capabilities to expand long-duration human exploration into deep space in a more efficient and safe manner, thus getting us to more destinations in deep space sooner.
- Initiate a vigorous new technology development and test program to increase the capabilities and reduce the cost of future exploration activities.

Supportability System Engineering's Integration Role

Supportability Considers Total System "Cost of Ownership"

Supportability Design Drivers

- Reliability
- Testability
- Diagnostics
- Prognostics
- Maintainability
- Commonality/interchangeability
- Affordability
- Producibility
- Sustainability
- Dependability
- Interoperability
- Accessibility
- Sparing / resupply
- Verification / validation
- Transportability
- Disposability
- Life Cycle Cost

What is Integrated Vehicle/System Health Management?

Vehicle/System Health Management is a disciplined process for designing, assessing and maintaining the health of systems and machines...

and draws upon:

- System architecture, engineering & design knowledge capture and management
- Classical engineering design practices, such as, the use of sensors, redundancy management, diagnostics and prognostics, risk assessment, fault tree analysis, testability analysis, maintainability analysis and human factors.
- Safety assurance
- Verification/validation

What Does IVHM/ISHM Design Directly Influence?

- Availability and Reliability of systems
- Safety and Risk design
- Maintenance man-hours
 - crew time for maintenance
 - maintenance training
 - maintenance documentation
- Mission support requirements and costs (spares, test equipment, levels of maintenance)
- Verification/validation of the above to meet mission requirements

Failure Space Modeling & Analysis

Failure Effects Model Fault Detection/Isolation Coverage (%FD/FI) Optimal Sensor Allocation for FD/FI C:\TEAMS55\COMPLIB\HELICO~1\Helicopter - TEAMS version 5.5 beta 📑 🕎 🔀 🖬 🔍 🗿 👗 🗉 🗵 **Design Hierarchy** Ambiguity Groups and Frequency File Edit Analysis Reports Tools Help Minimiz 1 I 4 🐼 🛱 8 9 8 8 1 7 2 9 9 7 5 7 2 9 9 Time to Criticality ê 🔒 Latency 🖃 🚺 Helicopter Accessory ______ Engine[1] - Helicopter Criticality of All Failure Modes ObinVibration_and_Torqui 🗄 🚺 Engine Safety Critical Coverage Anti Icing Blee Fuel_Low_Pressu 🗄 🚺 Engine Nodu E Fuel_Storage_System Mission Critical Coverage PreMTor PreMTo NP_H^{FUE} Nol Eng Fuel_Selector_Valv FUEL LOW PRESSURE Fuel_Selevi_valve T Weight of HM (Health Management) System SMICH 🗄 🚺 Fuel_Tank ANTHICE BLEED 🗄 🚺 Fuel_Tank Dri Cost of HM System - FuelContaminated - FuelLow Volume of HM System No1_Fuel_Low(CA) **Supportability** Engine Electri No2_Fuel_Low Memory Requirements for HM Engineering Prime_Boost_Pump Main_Fuel_Manif Prime_Valve Processing Requirements (CPU Usage) 115 To_ Ign - Prime_Valve Environment Fue OVERSPEED MAIN FUEL Pot MainRotor ETOP Near Optimal Diagnostic Strategy (Cost vs. le N Cliss 🗄 🚺 Tail_Rotor Tor ChipIntermediateMd RNoz Ignition Leadl Time) con I ChipTailRotorMd 0ve 🗄 🚺 FanAndRadiatorAssy 0ve IGNITION Maintenance Concept (Series vs. Block TES FanVibration LEAD 1 Ten Tor Replacement) INTXMSNOiTemp Ignition_Lead2 🗄 🚺 Module_Chip_Detecto • Time to Isolate, Time to Repair (Mean, Min, Fuel Filter IGNITION 🗄 ⊡ Module_Chip_Detector LEAD 2 Nodul Max. Av..) Nol_Fuel Fue _____ Fue 🗄 🚺 TaiDriveShaft1 24V NOL 🗄 🚺 TaiDriveShaft2 (ı) Predicted False Alarm Rate 🗄 🚺 TaiDriveShaft4 Vehicle Level FMECA - Comprehensive -Tests (and Attributes) AGE 🗄 🚺 TaiGearBox Module Fue Across all Systems - 🖸 TaiRotor Fue ue A GFue ue C EFue ue C A Dil - 🕐 TaiVibration Mission Reliability TaiXMSNOiTemp + Transmission • Appropriate ICAW (Indications, Cautions, Advisories, and Warnings) EDIT For Help, press F1 🏼 🍪 🗐 🐼 🐺 🚿 🔹 🖉 Slide Show 🚮 Start Interfaces (Relationships) 🕅 🛄 📶 🛃 🖉 🖅 🖾 📶 🖓 🚺 11:17 AM Appropriate Procedure to Mitigate and/or Repair

Supportability Engineering Environment Tool Interactions

Mission Requirements, System Design, Mission Operations, and Maintenance Concepts

Supportability Engineering Knowledge Base

Questions to be addressed in Supportability Analysis & Design

Reliability & Maintainability

- How should reliability goals be allocated among systems?
- How should redundancy be managed?
- Do reliability predictions match the actuals?
- What is the optimal level of repair?
- Are replaceable units accessible and common parts interchangeable?

Safety

- What is the impact of a failure (criticality, **time to criticality**, risk, and hazard)?
- What is the likelihood of failure during a mission?
- How can the system be improved (hazard elimination, control)?

Questions to be addressed in Supportability Analysis & Design

Testability – IVHM/ ISHM/ Prognostics

- Are all potential failures (HW, SW, Human error) detectable & isolatable?
- Can detecting degradation or anomalies prevent failures or hazards and save support costs?
- Is the on-board and off-board allocation of the Health Management capability cost effective and operationally acceptable?
- How/where does a failure propagate?
- How could the system fail in every operational phase?
- Can multiple failures or battle damage take out critical functions?
- What are the consequences of failure across the integrated design?
- How is each failure detected and isolated by each test method?
- How are undetectable failures being addressed?
- How are fault isolation ambiguity groups being managed?
- How are safety related failures mitigated or eliminated?
- What is the impact of each failure on mission success?
- How can technicians troubleshoot problems in an expert manner, minimize downtime, and reduce maintenance manpower?

Questions to be addressed in Supportability Analysis & Design

Logistics and Spares Optimization

- What is the optimal level of spares for each line replaceable unit, taking into account failure effect, duty cycle, volume, weight and replacement opportunities?
- What is the impact of failures on Operations and Maintenance?
- What are the logistics impacts of failures (spares, procedures, training, etc.)?
- Where should spares be pre-positioned and which spares are needed to ensure the availability of critical functions?.
- How can commonality impact spares requirements and reduce acquisition and support costs?

Lifecycle Cost

• Are total ownership costs minimized while maintaining a specified availability and readiness level?

Benefits to Failure Space Modeling

- Provides a common graphical representation of the vehicle, system, sub-system, to the component level
- Integrates with existing engineering, safety, maintenance and logistical data bases
- Allows detailed design trade studies to provide optimal implementation of embedded diagnostics, fault tolerance, maintenance strategy (on-board/off-board), and logistical support
- Automates a number of analysis functions, thus
 - Reduces engineering work load
 - Provides insight into design decisions
 - Reduces conflicts, errors and omissions
 - Provides insights into operations costs and effectiveness during the design process – to realistically reflect what is to be expected in operations
- Seamless transition of diagnostic reasoners into the IVHM/ISHM (On Board/Off Board) solution ensures that fault detection, fault isolation, and failure mitigation perform as advertised

What is the status of Failure Space Modeling Today?

Current status:

- The fundamental algorithms exist today
- The methodology has been applied to NASA, DoD and commercial systems over the past 15 years

What's needed?

The automation and generation of Failure Space Modeling and Analysis. This is a *Game Changing Technology*, which can:

- Save the government (DoD, NASA) billions of dollars in support costs.
- Reduce maintenance manpower
- Reduce design costs for diagnostics, safety and risk considerations
- Enable sound design trade-off considerations (diagnostics, spares, ambiguity groups, commonality, manpower requirements, etc.)
- Enable the contractor and government to V&V designs in meeting support requirements

