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Cross Industry Standard Process for Data Mining�
(CRISP-DM) - Fraud Detection illustration

How can we improve 
the current fraud 

detection process? 
How is fraud defined? 

Do we have verified 
examples of fraud?  
What attributes are 

available? 

Do we need to 
cleanse or modify 
attributes? How 

sample population? 

Which 
algorithm(s) will 
produce the best 

results? 

Are we meeting 
performance 

objectives?  What are 
the problem areas? 

How can we insert 
the model into 

existing 
processes? 
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Properties of Algorithms�
(a subjective, but empirical assessment)

Algorithm Accurate Scalable Interpretable Useable Robust Versatile Fast Hot

Classical
(LR, LDA)

– √ √– √ – – √ x

Neural
Networks

√ x x -x – x xx √

Visualization √ xx √ √ √√ x xxx √–

Decision
Trees

x √ √- √ √ √ √– √–

Polynomial
Networks

√ – x – –x – –x –

K-Nearest
Neighbors

x xx √– – –x x √ x

Kernels √ xx x –x x x √ x

√: good  -: neutral  x: bad
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Why Ensembles?

•  The process of selecting a model involves
– Model class selection

•  Linear regression, decision trees, neural network
– Variable selection

•  variable exclusion, transformation, smoothing
– Parameter estimation

•  One tends to choose the model that fits the 
data best as the model.
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Empirical Comparison
Commenting (favorably) on Leo Breiman’s contribution 
to the 11/1996 issue of Machine Learning, the Executive 
Editor revealed: 

“...In some of my own papers (1995), we conducted only 
one run of each algorithm and then applied a test for the 
difference of two proportions to draw statistical 
conclusions.  We did not consider the possibility that if 
the algorithms were run again on a second training set, the 
results could have been very different.” 
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What’s wrong with that?
•  Two models may equally fit a dataset �

(with repect to some loss function) �
but have different predictions.

•  Competing interpretable models with equivalent 
performance support ambiguious conclusions.

•  Model search dilutes the evidence.  �
“Part of the evidence is spent specifying the model.”
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Bayesian Model Averaging
Goal: Account for model uncertainty
Method: Use Bayes’ Theorem and average the 

models by their posterior probabilities

+  Improves predictive performance
+  Theoretically elegant
–  Computationally costly

Mk  - model
D  - data
P(D|Mk) - integrated 

likelihood of Mk
P(Mk) - prior model 

probability
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Bagging (Bootstrap Aggregating) 
algorithm (Breiman, 1996)

1. Create K bootstrap replicates of the dataset.
2. Fit a model to each of the replicates.
3. Average (or vote) the predictions of the K 

models.�

Bootstrapping simulates the stream of infinite 
datasets in a bias-variance decomposition.
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Bagging Example
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CART decision boundary
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100 bagged trees
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Bagged tree decision boundary
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Regression results�
Squared error loss
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Classification results�
Misclassification rates
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The Significance of a type of Bundling 
(Boosting)

“Boosting (Freund & Shapiro 1996, Schapiro & 
Singer 1998) is one of the most important recent 
developments in classification methodology.”

Friedman, Hastie, and Tibsharani (1998), “Additive Logistic 
Regression: A Statistical View of Boosting”, Technical Report, 
Stanford University. 
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Boosting algorithm (after Freund & Schapire [1996]) 

Equally weight the observations (y,x)i 

For t in 1,…,T
Using the weights, fit a classifier ft(x) → y
Upweight the poorly predicted observations
Downweight the well-predicted observations

Merge f1,…,fT to form the boosted classifier
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Boosting Example
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After one iteration�
CART splits, larger points have great weight
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After 3 iterations
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After 20 iterations
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Decision boundary after 100 iterations
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“Bundling” estimators consists of two steps:

•  Case Weights
•  Data Values
•  Guiding Parameters
•  Variable Subsets

1)  Construct varied models, and�
2)  Combine their estimates

Generate component models by varying:

Combine estimates using:
•  Estimator Weights
•  Voting
•  Advisor Perceptrons
•  Partitions of Design Space, X
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Other Bundling Techniques
We’ve Examined:
•  Bayesian Model Averaging:  sum estimates of possible models, weighted by 

posterior evidence
•  Bagging (Breiman 96) (bootstrap aggregating) -- bootstrap data (to build 

trees mostly); take majority vote or average
•  Boosting (Freund & Shapire 96) -- weight error cases by βt = (1-e(t))/e(t), 

iteratively re-model; average, weighing model t by ln(βt)
Additional Example Techniques:
•  GMDH (Ivakhenko 68) -- multiple layers of quadratic polynomials, using 

two inputs each, fit by Linear Regression
•  Stacking (Wolpert 92) -- train a 2nd-level (LR) model using leave-1-out 

estimates of 1st-level (neural net) models
•  ARCing (Breiman 96) (Adaptive Resampling and Combining) -- Bagging 

with reweighting of error cases; superset of boosting
•  Bumping (Tibshirani 97) -- bootstrap, select single best
•  Crumpling (Anderson & Elder 98) -- average cross-validations
•  Born-Again (Breiman 98) -- invent new X data...
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Reasons to combine estimators

•  Decreases variability in the predictions.
•  Accounts for uncertainty in the model class.
 -> Improved accuracy on new data.
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Application Example: Credit Scoring �
(Elder Research 1996-1998)

•  After 2 years experience, label credit accounts: �
0 (good), 1 (default = 90 days late at least once).

•  Create models to forecast this outcome �
using only information known at time of credit application.  

•  Use several (here, 5) different algorithms, �
all employing the same candidate model inputs.

•  Rank-order accounts:
–  Give highest-risk value a rank of 1, second highest 2, etc.
–  For bundling, combine model ranks (not estimates) into a 

new consensus estimate (which is again ranked).
•  Report number of defaulting accounts missed (in top portion).
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Median (and Mean) Error Reduced �
with each Stage of Combination
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Relative Performance Examples:  5 Algorithms on 6 Datasets�
(John Elder, Elder Research & Stephen Lee, U. Idaho, 1997)
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Essentially every Bundling method improves performance
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Bundling 5 Trees
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Interpreting why Bundling works
•  (semi-) Independent Estimators
•  Bayes Rule - weighing evidence
•  Shrinking (ex: stepwise LR)
•  Smoothing (ex: decision trees)
•  Additive modeling and maximum likelihood �

(Friedman, Hastie, & Tibshirani 8/20/98)

… Open research area.  �
Meanwhile, we recommend bundling competing candidate 
models both within, and between, model families.
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Ensemble Summary
•  At very least, compare your method to a conventional one �

(linear regression say, or linear discriminant analysis).  

•  The use of multiple approaches can also serve as a useful verification 
tool.  E.g., if one approach used

•  Not checking other methods leads to blaming the algorithm for the 
results.  But, it’s somewhat unusual for the particular modeling technique 
to make a big difference, and when it will is hard to predict. 

•  Best:  use a handful of good tools.  (Each adds only 5-10% effort.)


