Breakthroughs using Ensembles a Committee of Models

MITRE ASIAS Symposium
McLean, VA
July 27-28, 2009

Elder Research, Inc.
571-216-4926
635 Berkmar Circle
Charlottesville, Virginia 22901
www.datamininglab.com

Cross Industry Standard Process for Data Mining

 (CRISP-DM) - Fraud Detection illustration

Properties of Algorithms

(a subjective, but empirical assessment)

Algorithm	Accurate	Scalable	Interpretable	Useable	Robust	Versatile	Fast	Hot
Classical (LR,LDA)	-	$\sqrt{ }$	$\sqrt{ }-$	$\sqrt{ }$	-	-	$\sqrt{ }$	x
Neural Networks	$\sqrt{ }$	x	x	-x	-	x	xx	$\sqrt{ }$
Visualization	$\sqrt{ }$	xx	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ } \sqrt{ }$	x	xxx	$\sqrt{ }-$
Decision Trees	x	$\sqrt{ }$	$\sqrt{ }-$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }-$	$\sqrt{ }-$
Polynomial Networks	$\sqrt{ }$	-	x	-	-x	-	-x	-
K-Nearest Neighbors Kernels	x	xx	$\sqrt{ }-$	-	-x	x	$\sqrt{ }$	x

Why Ensembles?

- The process of selecting a model involves
- Model class selection
- Linear regression, decision trees, neural network
- Variable selection
- variable exclusion, transformation, smoothing
- Parameter estimation
- One tends to choose the model that fits the data best as the model.

Empirical Comparison

Commenting (favorably) on Leo Breiman's contribution to the 11/1996 issue of Machine Learning, the Executive Editor revealed:
"...In some of my own papers (1995), we conducted only one run of each algorithm and then applied a test for the difference of two proportions to draw statistical conclusions. We did not consider the possibility that if the algorithms were run again on a second training set, the results could have been very different."

What's wrong with that?

- Two models may equally fit a dataset (with repect to some loss function) but have different predictions.
- Competing interpretable models with equivalent performance support ambiguious conclusions.
- Model search dilutes the evidence.
"Part of the evidence is spent specifying the model."

Bayesian Model Averaging

Goal: Account for model uncertainty
Method: Use Bayes’ Theorem and average the models by their posterior probabilities

$M_{k}-$ model
$D-$ data
$\mathrm{P}\left(D \mid M_{k}\right)$ - integrated
\quad ikelihood of M_{k}
$\mathrm{P}\left(M_{k}\right)$ - prior model
\quad probability

+ Improves predictive performance
+ Theoretically elegant
- Computationally costly

Bagging (Bootstrap Aggregating) algorithm (Breiman, 1996)

1. Create K bootstrap replicates of the dataset.
2. Fit a model to each of the replicates.
3. Average (or vote) the predictions of the K models.

Bootstrapping simulates the stream of infinite datasets in a bias-variance decomposition.

Bagging Example

CART decision boundary

100 bagged trees

Bagged tree decision boundary

Regression results

Squared error loss

CART
Bagged CART

Classification results

 Misclassification rates

The Significance of a type of Bundling (Boosting)

"Boosting (Freund \& Shapiro 1996, Schapiro \& Singer 1998) is one of the most important recent developments in classification methodology."

Friedman, Hastie, and Tibsharani (1998), "Additive Logistic Regression: A Statistical View of Boosting", Technical Report, Stanford University.

Boosting algorithm (afiter Freund \& Schapire [1996])

Equally weight the observations $(y, x)_{i}$
For t in $1, \ldots, T$
Using the weights, fit a classifier $f_{t}(x) \rightarrow y$
Upweight the poorly predicted observations
Downweight the well-predicted observations

Merge $f_{1}, \ldots f_{T}$ to form the boosted classifier

Boosting Example

After one iteration

CART splits, larger points have great weight

After 3 iterations

After 20 iterations

Decision boundary after 100 iterations

"Bundling" estimators consists of two steps:

1) Construct varied models, and
2) Combine their estimates

Generate component models by varying:

- Case Weights
- Data Values
- Guiding Parameters
- Variable Subsets

Combine estimates using:

- Estimator Weights
- Voting
- Advisor Perceptrons
- Partitions of Design Space, X

Other Bundling Techniques

We've Examined:

- Bayesian Model Averaging: sum estimates of possible models, weighted by posterior evidence
- Bagging (Breiman 96) (bootstrap aggregating) -- bootstrap data (to build trees mostly); take majority vote or average
- Boosting (Freund \& Shapire 96) -- weight error cases by $\beta_{\mathrm{t}}=(1-\mathrm{e}(t)) / \mathrm{e}(t)$, iteratively re-model; average, weighing model t by $\ln \left(\beta_{t}\right)$
Additional Example Techniques:
- GMDH (Ivakhenko 68) -- multiple layers of quadratic polynomials, using two inputs each, fit by Linear Regression
- Stacking (Wolpert 92) -- train a 2nd-level (LR) model using leave-1-out estimates of 1st-level (neural net) models
- ARCing (Breiman 96) (Adaptive Resampling and Combining) -- Bagging with reweighting of error cases; superset of boosting
- Bumping (Tibshirani 97) -- bootstrap, select single best
- Crumpling (Anderson \& Elder 98) -- average cross-validations
- Born-Again (Breiman 98) -- invent new X data...

Reasons to combine estimators

- Decreases variability in the predictions.
- Accounts for uncertainty in the model class.
t $A^{->}$Improved accuracy on new data.

Application Example: Credit Scoring

 (Elder Research 1996-1998)- After 2 years experience, label credit accounts:

$$
0 \text { (good), } 1 \text { (default = } 90 \text { days late at least once). }
$$

- Create models to forecast this outcome using only information known at time of credit application.
- Use several (here, 5) different algorithms, all employing the same candidate model inputs.
- Rank-order accounts:
- Give highest-risk value a rank of 1 , second highest 2, etc.
- For bundling, combine model ranks (not estimates) into a new consensus estimate (which is again ranked).
- Report number of defaulting accounts missed (in top portion).

Credit Scoring Model Performance

Median (and Mean) Error Reduced with each Stage of Combination

No. Models in combination

Relative Performance Examples: 5 Algorithms on 6 Datasets (John Elder, Elder Research \& Stephen Lee, U. Idaho, 1997)

Essentially every Bundling method improves performance

Bundling 5 Trees

Improves lift, smoothness, and possible decision points

Interpreting why Bundling works

- (semi-) Independent Estimators
- Bayes Rule - weighing evidence
- Shrinking (ex: stepwise LR)
- Smoothing (ex: decision trees)
- Additive modeling and maximum likelihood (Friedman, Hastie, \& Tibshirani 8/20/98)
... Open research area.
Meanwhile, we recommend bundling competing candidate models both within, and between, model families.

Ensemble Summary

- At very least, compare your method to a conventional one (linear regression say, or linear discriminant analysis).
- The use of multiple approaches can also serve as a useful verification tool. E.g., if one approach used
- Not checking other methods leads to blaming the algorithm for the results. But, it's somewhat unusual for the particular modeling technique to make a big difference, and when it will is hard to predict.
- Best: use a handful of good tools. (Each adds only 5-10\% effort.)

