Evolving Local Fuzzy Models to Adapt in a Dynamic Environment:

An Example in Asset Management

Piero P. Bonissone

GE Global Research Schenectady, NY, USA

Outline

- 1. PHM at GE Global Research
- 2. Issues in Model Lifecycle
- 3. Computational Intelligence and Model Generation
- 3. Fuzzy Instance Based Model (F-IBM)
- 4. Prediction of Best Units for Asset Selection: Case Study
- 5. Future Work

1. PHM at GE Global Research

- PHM Technical Synergies
- PHM Elements
- PHM Installed Basis
- PHM Technology

PHM Technical Synergy

Prognostics and Health Management (PHM)

On-board Sensors & Off board Inspections

Anomaly Detection, Diagnostics & Prognostics Alg.

On-board / Off board Optimization Alg.

Visualization & Multi-Criteria Decision-Making Systems

GE Healthcare , GE Aviation

GE Energy GE Oil & Gas Piero P. Bonissone © All rights Reserved - CIDU 2008 GE Rail

LM

PHM: Comprehensive Foundations

PHM: From RM&D to Prognostics & Optimization

GE RM&D/PHM Installed Base

- ~20,000 steam/gas/hydro/wind turbines
- ~17,500 aircraft engines

~9,000 rail locomotives

~60,000 medical imaging machines

GE Rail

GE Healthcare GE Aviation

GE Energy

GE Oil & Gas

Lockheed Martin

PHM Elements

PHM Technologies

2. Issues in Model Lifecycle

- Handcrafting Models

- Lifecycle: Build, Use, Update & Maintain

Model Generation Process: Pictorial

What is Wrong with this Picture?

Let's Analyze the Problem

What Will Happen Over Time?

Addressing the Lifecycle of a KBS Example: Supervised Learning

Addressing the Lifecycle of a KBS (cont.)

Example: Supervised Learning

3. Computational Intelligence and Model Generation

- Representation, Reasoning, and Search
- Functional Approximation (ANFIS) vs Fuzzy Instance Based Model (F-IBM)

Representation, Reasoning & Design Search

Modeling Techniques	CLASSICAL: Linear Differential Equations	CI: Bayesian Belief Networks	CI: Neural Networks	CI: Fuzzy Systems TSK/ ANFIS	CI: Fuzzy Instance Based Reasoning
Model Structure	Order	Topology	Topology	Rule Set	Attribute Space
Model Parameters	Coefficients	Prior Prob. Conditional Prob.	Biases Weights	Term sets Scaling Factors Coefficients	Attribute weights Similarity parameters
Reasoning Mechanism	Solve equations - Closed form - Approximation	Propagation	Propagation	Node evaluation & Propagation	Local Model evaluation & Output combination
Design Search Method	First principle Energy balance methods (Bond Graphs)	Manual EM EA 	Manual EA Backpropaga tion Conjugate gradient,	Manual EA Backpropaga tion	Manual EA Fuzzy Instant Based
	prk	Piero P. Bonissone © All rig	its Reserved - CIDU 2008		Model

R E P R E S E N T A T I O N

Functional Approximation vs. Instance-Based

Functional Approximation vs. Instance-Based

imagination at work

ANFIS Network

L₀: Inputs layer nodes: State variables L₁: Values layer nodes: State variable Termsets, computing the membership value of inputs L₂: Rules layer nodes: Fuzzy Rules, using product to compute rule matching factor w_i L₃: Normalization layer nodes: Each w_i is normalized (to add up to one) generating $\overline{\mathcal{O}}_{i}$ L₄: Function layer nodes: Linear regressions f_i are evaluated, generating rule outputs y_i that are weighted by normalized rule matching factors $\overline{\omega}$. L₅: Output layer node:

Sum of weighted outputs – (completing weighted average v_i outputs y_i)

ANFIS Reasoning: Geometrical Interpretation

ANFIS Reasoning: Algebraic Interpretation $\left|\left(\overline{a},\overline{b},\overline{c} ight) ight|$ [Parameters of GBF $_{j}$] **Partial Matching** $GBF_{j,i}(x_i;a_i,b_i,c_i) \longrightarrow \bigcap_{i=1}^n [S_{i,j}]$ S_{j} $\sum_{i=1}^{k} S_i$ Possibility Possibility Measure for rule *j* evaluated on feature Measure for Rule j Normalized \hat{S}_{j} Possibility Probe Local Models (Rules RHS) Measure y_1 $f_1(\overline{X}_0) = q_{1,0} + \sum_{i=1}^n q_{1,i} x_{0,i}$ y_2 \overline{X}_Q $\sum_{j=1}^{k} \hat{S}_{j} \times y_{j} \rightarrow \hat{y}_{q}$ $f_2(\overline{X}_0) = q_{2,0} + \sum_{i=1}^n q_{2,i} x_{0,i}$ y_k $f_k(\overline{X}_Q) = q_{k,0} + \sum_{i=1}^n q_{k,i} x_{0,i}$ Aggregation $(q_{1,0},...,q_{1,n})...(q_{k,0},...,q_{k,n})$ [Coefficients in Rules RHS] imagination at work

Functional Approximation vs. Instance-Based

To FIBM

Kernel-based Models

Classical Kernel-based Models

We have:

- a collection of points $\{u_i\}$:
- a Kernel function of the distance between each data point and the query, and a smoothing parameter h

magination at work

Examples of Kernel Functions K

- - $K\left(\frac{d(\overline{X}_{j}, \overline{X}_{Q})}{h}\right)$

Examples of Distances d (from Atkeson, Moore, Schaal, 1996)

• Unweighted Euclidean distance:

$$d_{\mathrm{E}}(\mathbf{x}, \mathbf{q}) = \sqrt{\sum_{j} (\mathbf{x}_{j} - \mathbf{q}_{j})^{2}} = \sqrt{(\mathbf{x} - \mathbf{q})^{\mathrm{T}}(\mathbf{x} - \mathbf{q})}$$
(24)

• Diagonally weighted Euclidean distance:

$$d_m(\mathbf{x}, \mathbf{q}) = \sqrt{\sum_j \left(m_j(\mathbf{x}_j - \mathbf{q}_j) \right)^2} = \sqrt{(\mathbf{x} - \mathbf{q})^{\mathrm{T}} \mathbf{M}^{\mathrm{T}} \mathbf{M}(\mathbf{x} - \mathbf{q})} = d_{\mathrm{E}}(\mathbf{M}\mathbf{x}, \mathbf{M}\mathbf{q}) \quad (25)$$

where m_i is the feature scaling factor for the *j*th dimension and **M** is a diagonal matrix with $\mathbf{M}_{jj} = m_j$.

• Fully weighted Euclidean distance:

$$d_{\mathbf{M}}(\mathbf{x}, \mathbf{q}) = \sqrt{(\mathbf{x} - \mathbf{q})^{\mathrm{T}} \mathbf{M}^{\mathrm{T}} \mathbf{M}(\mathbf{x} - \mathbf{q})} = d_{\mathrm{E}}(\mathbf{M}\mathbf{x}, \mathbf{M}\mathbf{q})$$
(26)

where \mathbf{M} is no longer diagonal but can be arbitrary. This is also known as the Mahalanobis distance (Tou and Gonzalez, 1974; Weisberg, 1985).

• Unweighted L_p norm (Minkowski metric):

$$d_p(\mathbf{x}, \mathbf{q}) = \left(\sum_i |\mathbf{x}_i - \mathbf{q}_i|^p\right)^{\frac{1}{p}}$$
⁽⁷⁾

• Diagonally weighted and fully weighted L_p norm: The weighted L_p norm is $d_p(\mathbf{Mx}, \mathbf{Mq}).$

Kernel-based Models: Nadaraya-Watson Estim.

Kernel-based Models: Weighted Regression

Kernel-based Regressions

Data Weighting Process:

- Use the Kernel function (evaluated at each point u_j) as a weight
- Create a diagonal [k x k] matrix **W** with diagonal elements $W_{jj} = w_j$ and zeros elsewhere
- Create a [$k \times n$] matrix **X** with the original state data. The *i*th row of **X** contains the *n* coordinates of the *i*th point, i.e., \overline{X}_i
- Create a $[k \times 1]$ vector **Y** with the original output data. The *i*th row of **Y** contains the value of y_i
- Weigh matrix **X** and vector **Y** using the weights **W**:

Z is [k × n] and **V** is [k × 1]

- We want to solve the equation:

$$\hat{y}(Q) = \overline{X}_Q (Z^T Z)^{-1} Z^T V$$

 $(Z^T Z)^{-1}$

 $w_{j} = \sqrt{K\left(\frac{d(\overline{X}_{j}, \overline{X}_{Q})}{K}\right)}$

which is predicated on having a non-singular $[n \times n]$ matrix:

- When the matrix $(Z^T Z)^{-1}$ is singular we can resolve the issue using ridge regressions

Kernel-based Models: Weighted Regression

Functional Approximation vs. Instance-Based

- Retrieval
- Similarity Evaluation
- Creation of Local Models
- Outputs Aggregation
- Evolutionary Search for Designing a F-IBM

Comparison with Case Based Reasoning

- IBM's rely on a collection of previously experienced data that can be store in their raw representation
- Unlike Case-based Models (CBM's), IBM's **do not need** to have data refined, abstracted and **organized as cases**
- Like CBM's, IBM's are based on analogical reasoning, as they rely upon finding previous instances of *similar* objects (or points) and use them to create an ensemble of local models

Comparison with Case Based Reasoning

- IBM's rely on a collection of previously experienced data that can be store in their raw representation
- Unlike Case-based Models (CBM's), IBM's do not need to have data refined, abstracted and organized as cases
- Like CBM's, IBM's are based on analogical reasoning, as they rely upon finding previous instances of **similar** objects (or points) and use them to create an ensemble of local models

Similarity Measure

- The definition of **similarity** plays a **critical** role in IBM's performance
- Similarity will be a **dynamic** concept and will change over time. Therefore, it is important to apply **learning** methodologies **to define it and adapt it.**
- Furthermore, the concept of similarity is not crisply defined, creating the need to allow for some degree of **vagueness** in its evaluation

Comparison with Case Based Reasoning

- IBM's rely on a collection of previously experienced data that can be store in their raw representation
- Unlike Case-based Models (CBM's), IBM's do not need to have data refined, abstracted and organized as cases
- Like CBM's, IBM's are based on analogical reasoning, as they rely upon finding previous instances of **similar** objects (or points) and use them to create an ensemble of local models

Similarity Measure

- The definition of **similarity** plays a **critical** role in IBM's performance
- Similarity will be a dynamic concept and will change over time. Therefore, it is important to apply learning methodologies to define it and adapt it.
- Furthermore, the concept of similarity is not crisply defined, creating the need to allow for some degree of **vagueness** in its evaluation

Solution:

Ņ

• By using a *wrapper* approach, we *evolve* the *design of the similarity* function and the *design of the attribute space* in which the similarity is to be evaluated.

F-IBM Reasoning: Geometrical Interpretation

F-IBM Reasoning: Algebraic Interpretation

- We address this design issues by evolving the design of a similarity function in conjunction with the design of the attribute space in which similarity is evaluated. Specifically we us the following four steps:
- **1)** *Retrieval* of similar instances from the Data Base
- 2) Evaluation of similarity measure between the probe and the retrieved instances
- 3) Creation of local models using the most similar instances
- 4) Outputs Aggregation (weighted by their similarities)

Let us explain the four steps

(1) Retrieval

Piero P. Bonissone © All rights Reserved - CIDU 2008

(2) Similarity Evaluation

(3) Creation of Local Models

Local Models

Rather than using a pre-constructed model, as in ANFIS or other functional approximators, we use local models, as in memory-based approaches, kernel-based regressions, and lazy-learning.

In this example, each retrieved object u_i has an associated time-series:

$$O(u_j) = [D_{1,j}, D_{2,j}, ..., D_{t(j),j}]$$

One of the simplest local models that we can create is the *exponential average*, that will "discount" the oldest data, using a forgetting factor a.

The peer u_j of the probe will produce an output y_j representing the prediction for the next point in the time-series:

$$y_{j} = D_{t(j)+1,j}$$

= $\overline{D}_{t(j),j} = \alpha \times D_{t(j),j} + (1-\alpha) \times \overline{D}_{t(j)-1,j}$ [where $\overline{D}_{1,j} = D_{1,j}$]
= $(1-\alpha)^{k(j)-1} D_{1,j} + \sum_{i=2}^{t(j)} (1-\alpha)^{t(j)-i} \times \alpha \times D_{i,j}$

(4) Outputs Aggregation

Outputs Aggregation (weighted by their similarities)

We need to combine the individual predictions $\{D_{t(j)+1,j}\}$ (j=1,...,k) obtained from the peers $u_i(Q)$ to generate the next prediction $D_{Next,Q}$ for the probe Q

To this end, we compute the weighted average of the peers' individual predictions using their normalized similarity to the probe as a weight:

$$\hat{y}_{Q} = D_{Next,Q} = \frac{\sum_{j=1}^{k} S_{j} \times D_{t(j)+1,j}}{\sum_{j=1}^{k} S_{j}} = \frac{\sum_{j=1}^{k} S_{j} \times y_{j}}{\sum_{j=1}^{k} S_{j}}$$

If we define the normalized weights as:

$$\hat{S}_j = \frac{S_j}{\sum_{j=1}^k S_j}$$

then the above expression can be rewritten as:

$$\hat{y}_{Q} = \sum_{j=1}^{k} \hat{S}_{j} \times y_{j} = \left\langle \hat{S}, Y \right\rangle$$

(4) Outputs Aggregation (cont.)

Outputs Aggregation (weighted by their similarities)

$$\hat{y}_{Q} = D_{Next,Q} = \frac{\sum_{j=1}^{k} S_{j} \times y_{j}}{\sum_{j=1}^{k} S_{j}}$$

Note that this expression (a convex sum of local models outputs using the similarities as weights) is similar to the structure of the **Nadaraya-Watson** [1964] estimator for non-parametric regressions using locally weighted averages – where the weights are the values of a kernel function K:

$$\hat{y}_{Q} = \frac{\sum_{j=1}^{k} K(x - x_{j}) \times y_{j}}{\sum_{j=1}^{k} K(x - x_{j})}$$

From this analogy, we can see a structural similarity between the Similarity measures S_j used by the Instance-based method and the Kernel functions K evaluated on the distance between the probe and each point, i.e.:

$$S_j \approx K(x - x_j)$$

Evolutionary Search

EA to Search in Design Space

- The EA is composed of a population of individuals ("chromosomes"), each of which contains a vector of elements representing distinct tuneable parameters within the FIM configuration.
- The EA used two types of mutation operators (Gaussian and uniform), and no crossover. Its population (with 100 individuals) was evolved over 200 generations
- Each chromosome defines an instance of the attribute space used by the associated model by specifying a vector of weights $[w_1, w_2, ..., w_n]$.

Evolutionary Search

EA to Search in Design Space

- The EA is composed of a population of individuals ("chromosomes"), each of which contains a vector of elements representing distinct tuneable parameters within the FIM configuration.
- The EA used two types of mutation operators (Gaussian and uniform), and no crossover. Its population (with 100 individuals) was evolved over 200 generations
- Each chromosome defines an instance of the attribute space used by the associated model by specifying a vector of weights [w1, w2, ..., wn].
- If *w_i*∈{0,1} we perform *attribute selection*, i.e., we select a crisp subset from the universe of potential attributes.
- If w_i∈[0,1] we perform *attribute weighting*, i.e., we define a fuzzy subset from the universe of potential attributes

Chromosome representation:

$$[w_1 w_2 \dots w_n][(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n)][\alpha]$$

 $w1 = 0 \rightarrow X1$ is NOT selected & we do not care about (a1, b1) – since we do not use X1

magination at v $w1 = 1 \rightarrow X1$ IS selected & (a1, b1) define how tolerant (high a1, low b1) or strict (low a1, high b1) we want to be when evaluating similarity along x1

Wrapper and Filter Approaches

Evolutionary Search for Designing A Fuzzy IBM (Predictor) using a Wrapper Approach

Evolutionary Search for Designing A Fuzzy IBM (Classifier) using a Wrapper Approach

 $[w_1 w_2 \dots w_n][(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n)][\alpha]$ Chromosome: To Example magination at work

Effect of Changing Parameters {a,b,c}

5. Case Study: Prediction of Best Units for Asset Selection

- Asset Selection for Mission Reliability: A locomotive example
- Data Collection, Baselines, and Experiments
- Peer Learning Methodology
- Results & Conclusions

Asset Selection Outline

- Problem Description
- Data Collection and Experiments Set-Up
- Proposed Peer-Learning Methodology
- Results
- Conclusions

Asset Selection Outline

Problem Description

- Mission Reliability
- The Selection Problem
- Data Collection and Experiments Set-Up
- Proposed Peer-Learning Methodology
- Results
- Conclusions

The Premise

New learning approaches can address early phases of new platform deployment with limited operational and sensor data.

-Learning using **existing utilization and maintenance history** improves our ability to select the best units for a mission, leading to better utilization of existing assets.

-Learning from peers is a robust approach to rapid learning from limited data.

-**Evolutionary Learning** provides a comprehensive framework for automating the design and maintenance of a classifier used for selection of the best assets.

Asset Selection Based on Predicted Life

Metric of Success: Selection Precision

Asset Selection Outline

Problem Description

Data Collection and Experiments Set-Up

- Data Sources
- Experiments: Metrics and Baselines
- Proposed Peer-Learning Methodology
- Results

Conclusions

Data Compilation and Experiments

Data Categories:

- Configuration Information
- Maintenance & Repair Information
 - Fault Codes Recommendations Repairs
- Utilization Information

(Source: GE Rail)

(Source: Locomotive's EOA) (Source: GE Rail) (Source: GE Rail / Railroads) (Source: Railroads)

Data Collection and Compilation: Tables Relationships

Data Slices

Asset Selection Outline

- Problem Description
- Data Collection and Experiments Set-Up
- Proposed Peer-Learning Methodology
 - Definition of Peers
 - Fuzzy Instance-based Classifier (FIBC)
 - Evolution of FIBC Design
- Results
- Conclusions

Current Location of All Available Locomotives

Mission Requirements

# Locomotives needed:	12
Duration:	9 days
Start date:	+ 48 hrs
Distance:	2,435 miles
Average Miles/day	304 m/day Max
Grade/Elevation:	2%
Climate. Tunnel operation:	desert. hot

Loco Number: Design and Configuration	5700
Туре:	AC4400
Electrical System:	Bosch
Utilization Information	
Age:	2.9 years
Mileage:	247,567 mi.
Average miles/day:	299
Maintenance Information	
Time elapsed since last repair:	10 days
Median time between repairs	60 days
Median time from repair to next	
recommendation (R×)	52 days

Loco 5700

Identifying Loco 5700's Peers

Asset Selection Outline

- Problem Description
- Data Collection and Experiments Set-Up
- Proposed Peer-Learning Methodology
- Results
 - Experiment 1: Top 20% Current Performers

 Robustness
 - Experiment 2: Top 52 units Current Performers
 - Experiment 3: Top 20% Future Performers
 - Experiment 3 bis: Top 20% Future Performers
 - Static vs Dynamic Models

Conclusions

Baseline – Single-Heuristic based Selection

- Heuristic selection of N1 units (based on full fleet)

Objective: Create heuristic knowledge driven baseline.

Exp 1: Peers Evolution over Time: Estimating Best Current performers (20%)

(Targeting top 20% of units for each Time Slice)

Piero P. Bonissone © All rights Reserved - CIDU 2008

Exp 2: Peers Evolution over Time: Estimating best Current performers (52 units)

(Targeting Top 52 units for each Time Slice)

Piero P. Bonissone © All rights Reserved - CIDU 2008

Exp 3: Peers Evolution over Time: Estimating best future performers

(Targeting top 20% of units for each Time Slice)

Piero P. Bonissone © All rights Reserved - CIDU 2008

Experiment 4: Comparing Evolved, Dynamic (updated) Peers with Evolved Static (Non-updated) Peers: Estimating Best <u>Future</u> Performers

The Benefit of Automated Peer Redesign/Update

Jaination at wor

Asset Selection Outline

- Problem Description
- Data Collection and Experiments Set-Up
- Proposed Peer-Learning Methodology
- Results
- Conclusions
 - Summary

Attribute Weighing using GA [Slice 3] (for prediction, ranking, and selection of best units)

Feature	Weight	а	b
RY_REC/YR	9.11	5.55	3.73
RY_REC/100K_MILES	8.81	5.35	2.57
RY_REC/100K_ENGINE_HRS	7.35	35.94	2.67
REC_COUNT_RY	5.69	8.49	3.37
RY_REC/100K_ENG_HRS_MOVE	4.08	10.06	2.75
TOT_REC_COUNT	1.33	18.70	3.20
RED_REC_COUNT	0.87	0.99	3.16

Conclusions

• Validating the Premise

- Combining limited utilization and maintenance history **improves our ability to select the best units for a mission**.
- Evolved Peers provided the **best overall accuracy** (60.35% = over 3 times better than random selection) for past performance. When the selection was limited to a small fixed number of units, Evolved Peers provided an accuracy of 63.5% (over 10 times better than random selection) for past performance.
- Evolved Peers provided the **best overall accuracy** (55% = **2.7 times better than random selection** and 1.5 × better than best heuristics) for future performance
- Construction of local fuzzy models does not require computing a distance in the n-dimensional feature space

• Operational Impact:

- **Robustness** to information loss exhibited by peer-based approach will enable mission reliability for minimally instrumented platforms operating with limited bandwidth

6. Future Work

- Improving the Feature Space: GP for Attribute Construction
- Improving Fitness Function: Accuracy, Confidence, Info. Theory
- Improving Aggregation: Adapting Kernel Based Regressions

Future Work

- Extend evolutionary search
 - from attribute selection and weighting to attribute construction
- Improve fitness function
 - to address classifier accuracy and confidence, and representation parsimony
- Improve aggregation models

Future Work

 Extend evolutionary search from attribute selection and weighting to attribute construction.

Use **Genetic Programming** to automate attribute construction and evolve attribute space with functional compositions of primitive attributes

GA: $[(w_1, w_2, ..., w_D)][(a_1, b_1), ..., (a_D, b_D)][\alpha]$

GP:
$$[f_1 * g_1 * ... * h_1(w_1, w_2, ..., w_D), ..., f_D * g_D * ... * h_D(w_1, w_2, ..., w_D)][(a_1, b_1), ..., (a_D, b_D)][\alpha]$$

A sentence derived from a grammar that defines a syntactically correct functional composition of attributes to replace a primitive attribute

Future Work: Improving the Fitness Function

• Extend evolutionary search.

Improve *fitness function* to address classifier accuracy and confidence, and representation parsimony

 K_i = number of points retrieved for case I (Cardinality of ith retrieval)

Retrieval_Inaccuracy (i)= (nmin;)/ K; = Cardinality of Non-Mode/TotalCardinality for ith retrieval

Typical values: $\alpha_1 = 2; \ \alpha_2 = 0.2; \ \alpha_3 = 0.1$

Future Work

- Extend evolutionary.
- Improve fitness function

Improve aggregation models

We could use the similarity measures as *kernel functions* for each dimension *i* and create *kernel-based regressions*

We would use local search methods to obtain the parameters of the kernelbased regression, within each trial of the EA's.

Future Work: Improving Aggregation

- **Oth Order Approximation** (weighted average)
- It works well when interpolating

- **Oth Order Approximation** (weighted average)
- It is lousy when **extrapolating**
- Bounded by the **minimum** & **maximum** of its arguments

Future Work: Improving Aggregation

- **Oth Order Approximation** (weighted average)
- It is lousy when **extrapolating**
- Bounded by the **minimum** & **maximum** of its arguments

- 1st Order Approximation (Weighted Linear Regression)
- Weight each data point by its similarity degree with the probe Q

Improved F-IBM: Algebraic Interpretation

Further Resources

From my Web site:

www.rpi.edu/~bonisp

Go to:

http://www.rpi.edu/~bonisp/publications-new.html

Relevant papers that you can download:

"Hybrid Soft Computing Systems: Industrial and Commercial Applications", P. P. Bonissone, Y-T Chen, K. Goebel and P. S. Khedkar, *Proceedings of the IEEE*, pp 1641--1667, vol. 87, no. 9, Sept. 1999. <u>http://www.rpi.edu/~bonisp/NASA-course/hybridSC99.pdf</u>

"When will it break? A Hybrid Soft Computing Model to Predict Time-to-break Margins in Paper Machines", P. Bonissone and K. Goebel, *Proc. SPIE* 2002, pp. 53--64, Aug. 2002, Seattle, WA <u>http://www.rpi.edu/~bonisp/NASA-course/webbreakage.pdf</u>

"Evolutionary Optimization of Fuzzy Decision Systems for Automated Insurance Underwriting", P. Bonissone, R. Subbu, and K. Aggour, *Proc. FUZZ-IEEE 2002*, pp. 1003 - 1008, May 2002, Honolulu, HI. <u>http://www.rpi.edu/~bonisp/NASA-course/wcci2002.pdf</u>

"Automating the Quality Assurance of an On-line Knowledge-Based Classifier By Fusing Multiple Off-line Classifiers", P. Bonissone, *Inform. Proc. & Management of Uncertainty (IPMU)*, Perugia, Italy, July 2004 <u>http://www.rpi.edu/~bonisp/NASA-course/IPMUv8.pdf</u>

"Development and Maintenance of Fuzzy Models in Financial Applications", P. Bonissone, *Proc. SMPS 2004*, , Oviedo, Spain, September 2004. <u>http://www.rpi.edu/~bonisp/NASA-course/Oviedo2004.pdf</u>

"Six Sigma Quality Applied Throughout the Lifecycle of and Automated Decision System", A. Patterson, P. Bonissone, and M. Pavese, *Journal of Quality and Reliability International*, 21:275-292, 2005 <u>http://www.rpi.edu/~bonisp/NASA-course/SixSigma.pdf</u>

"An Evolutionary Process for Designing and Maintaining a Fuzzy Instance-based Model (FIM)", P. Bonissone, A. Varma, K. Aggour, 1st Workshop Genetic Fuzzy Systems (GFS 2005), Granada, Spain, March 2005. <u>http://www.rpi.edu/~bonisp/NASA-course/piero-gfsmod.pdf</u>

Predicting the Best Units within a Fleet: Prognostic Capabilities Enabled by Peer Learning, Fuzzy Similarity, and Evolutionary Design Process", P. Bonissone, A. Varma, *FUZZ-IEEE 2005*, pp 312-318, Reno NV, May 22-25, 2005.

http://www.rpi.edu/~bonisp/NASA-course/fuzz05anilfinalv27.pdf

Questions?

Piero P. Bonissone © All rights Reserved – CIDU 2008

Thank You!

Piero P. Bonissone © All rights Reserved - CIDU 2008