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1. PHM at GE Global Research

- PHM Technical Synergies
- PHM Elements 
- PHM  Installed Basis
- PHM Technology
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P HM
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2. Issues in Model Lifecycle

- Handcrafting Models
- Lifecycle: Build, Use, Update & Maintain
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Model Generation Process: Pictorial
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Let’s Analyze the Problem
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What Will Happen Over Time?
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Addressing the Lifecycle of a KBS
Example: Supervised Learning 
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Addressing the Lifecycle of a KBS (cont.)
Example: Supervised Learning 
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3. Computational Intelligence and Model 
Generation

- Representation, Reasoning, and Search
- Functional Approximation (ANFIS) vs Fuzzy Instance Based 

Model (F-IBM)
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Functional Approximation vs. Instance-Based
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0ŷ

0X

Probe U0= [ ]00
ˆ, yX

Radial Basis 
Functions

Neural 
Networks

Neural Fuzzy 
Systems (ANFIS)

Fuzzy 
Systems

Feed-forward
Networks

Takagi Sugeno
Systems

Mamdani-type
Systems

AI

(Continuous) 
CBR

ML

Statistics

Reasoning

Lazy Learning

Fuzzy Instance 
Based Models (F-IBM)

Kernel-Based
Models



Piero P. Bonissone © All rights Reserved – CIDU 2008

ANFIS Network
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Functional Approximation vs. Instance-Based
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Classical Kernel-based Models
We have:

- a collection of points {uj}:
- a Query Q defined in the space
- a Kernel function of the distance between each data point and the query,        
and a smoothing parameter h

Examples of Kernel Functions K Examples of Distances d
(from Atkeson, Moore, Schaal, 1996)

kjyxxxyXu jjnjjjjj ,...,1    where] ;,...,,[];[ ,,2,1 ===
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Kernel-based Models
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Kernel-based Regressions
Data Weighting Process:
- Use the Kernel function (evaluated at each point uj) as a weight 
- Create a diagonal [k x k] matrix W with diagonal elements Wjj= wj  and  
zeros elsewhere
- Create a [k x n] matrix X with the original state data.  The ith row of X
contains the n coordinates of the ith point, i.e.,       
- Create a [k x 1] vector Y with the original output data.  The ith row of Y
contains the value of yi
- Weigh matrix X and vector Y using the weightsW:

Z = WX and V=WY Z is [k x n] and V is [k x 1] 

- We want to solve the equation:

which is predicated on having a non-singular [n x n] matrix:

- When the matrix    is singular we can resolve the issue using ridge   
regressions

iX
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Kernel-based Models: Weighted Regression
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Functional Approximation vs. Instance-Based

Neural 
Networks

Fuzzy 
Systems

Radial Basis 
Functions

Feed-forward
Networks

Takagi Sugeno
Systems

x2

x1

xn
1.0

0.0

0.2

0.4

0.6

0.8

c1

a1

b1
   XSpaceState

R1

Local Models

& Aggregation
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0ŷ

0X

Probe U0= [ ]00
ˆ, yX

Mamdani-type
Systems

AI

(Continuous) 
CBR

ML

Statistics

Reasoning

Lazy Learning

Fuzzy Instance 
Based Models (F-IBM)

Neural Fuzzy 
Systems (ANFIS)

Kernel-Based
Models



Piero P. Bonissone © All rights Reserved – CIDU 2008

4. Fuzzy Instance Based Model (F-IBM) 

- Retrieval
- Similarity Evaluation
- Creation of Local Models
- Outputs Aggregation
- Evolutionary Search for Designing a F-IBM
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Fuzzy Instance Based Models (F-IBM’s)
Comparison with Case Based Reasoning

• IBM’s rely on a collection of previously experienced data that can be 
store in their raw representation

• Unlike Case-based Models (CBM’s), IBM’s do not need to have data 
refined, abstracted and organized as cases

• Like CBM’s, IBM’s are based on analogical reasoning, as they rely upon 
finding previous instances of similar objects (or points) and use them to 
create an ensemble of local models
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Fuzzy Instance Based Models (F-IBM’s)
Comparison with Case Based Reasoning

• IBM’s rely on a collection of previously experienced data that can be 
store in their raw representation

• Unlike Case-based Models (CBM’s), IBM’s do not need to have data 
refined, abstracted and organized as cases

• Like CBM’s, IBM’s are based on analogical reasoning, as they rely upon 
finding previous instances of similar objects (or points) and use them to 
create an ensemble of local models

Similarity Measure

• The definition of similarity plays a critical role in IBM’s performance

• Similarity will be a dynamic concept and will change over time.  
Therefore, it is important to apply learning methodologies to define it 
and adapt it. 

• Furthermore, the concept of similarity is not crisply defined, creating the 
need to allow for some degree of vagueness in its evaluation
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Fuzzy Instance Based Models (F-IBM’s)
Comparison with Case Based Reasoning

• IBM’s rely on a collection of previously experienced data that can be 
store in their raw representation

• Unlike Case-based Models (CBM’s), IBM’s do not need to have data 
refined, abstracted and organized as cases

• Like CBM’s, IBM’s are based on analogical reasoning, as they rely upon 
finding previous instances of similar objects (or points) and use them to 
create an ensemble of local models

Similarity Measure

• The definition of similarity plays a critical role in IBM’s performance

• Similarity will be a dynamic concept and will change over time.  
Therefore, it is important to apply learning methodologies to define it 
and adapt it. 

• Furthermore, the concept of similarity is not crisply defined, creating the 
need to allow for some degree of vagueness in its evaluation

Solution:

• By using a wrapper approach, we evolve the design of the similarity
function and the design of the attribute space in which the similarity is 
to be evaluated.
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Fuzzy Instance Based Models (F-IBM’s)

We address this design issues by evolving the design of a 
similarity function in conjunction with the design of the 
attribute space in which similarity is evaluated.  Specifically we 
us the following four steps: 

1) Retrieval of similar instances from the Data Base

2) Evaluation of similarity measure between the probe and the 
retrieved instances

3) Creation of local models using the most similar instances

4) Outputs Aggregation (weighted by their similarities)

Let us explain the four steps
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(1) Retrieval

Feature SpaceRepresentation History
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(2) Similarity Evaluation
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(3) Creation of Local Models

Local Models

Rather than using a pre-constructed model, as in ANFIS or other  functional 
approximators, we use local models, as in memory-based approaches, kernel-
based regressions, and lazy-learning.

In this example, each retrieved object uj has an associated time-series:

One of the simplest local models that we can create is the exponential average, 
that will “discount” the oldest data, using a forgetting factor a.

The peer uj of the probe will produce an output yj representing the prediction for 
the next point in the time-series:
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(4) Outputs Aggregation 
Outputs Aggregation (weighted by their similarities)

We need to combine the individual predictions {Dt(j)+1,j} (j=1,…, k) obtained from the 
peers ui(Q) to generate the next prediction DNext,Q for the probe Q

To this end, we compute the weighted average of the peers’ individual 
predictions using their normalized similarity to the probe as a weight:

If we define the normalized weights as: 

then the above expression can be rewritten as: 
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(4) Outputs Aggregation (cont.) 
Outputs Aggregation (weighted by their similarities)

Note that this expression (a convex sum of local models outputs using the 
similarities as weights) is similar to the structure of the Nadaraya-Watson [1964] 
estimator for non-parametric regressions using locally weighted averages –
where the weights are the values of a kernel function K:

From this analogy, we can see a structural similarity between the Similarity 
measures Sj used by the Instance-based method and the Kernel functions K 
evaluated on the distance between the probe and each point, i.e.:
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Evolutionary Search

EA to Search in Design Space

The EA is composed of a population of individuals (“chromosomes”), 
each of which contains a vector of elements representing distinct 
tuneable parameters within the FIM configuration.

The EA used two types of mutation operators (Gaussian and uniform), 
and no crossover. Its population (with 100 individuals) was 
evolved over 200 generations

Each chromosome defines an instance of the attribute space used by 
the associated model by specifying a vector of weights [w1, w2, …, 
wn]. 
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Evolutionary Search

EA to Search in Design Space

The EA is composed of a population of individuals (“chromosomes”), each of which 
contains a vector of elements representing distinct tuneable parameters 
within the FIM configuration.

The EA used two types of mutation operators (Gaussian and uniform), and no 
crossover. Its population (with 100 individuals) was evolved over 200 
generations

Each chromosome defines an instance of the attribute space used by the 
associated model by specifying a vector of weights [w1, w2, …, wn]. 

If wi∈{0,1} we perform attribute selection, i.e., we select a crisp subset from the 
universe of potential attributes. 

If wi∈[0,1] we perform attribute weighting, i.e., we define a fuzzy subset from the 
universe of potential attributes

Chromosome representation:

[ ] ( ) ( ) ( )[ ][ ]α , ..., ,, ,,  ...  221121 nnn bababawww

w1 = 0 →→→→ X1 is NOT selected & we do not care about (a1, b1) – since we do not use X1
w1 = 1 →→→→ X1 IS selected & (a1, b1) define how tolerant (high a1, low b1) or strict (low a1, high b1) we want to be when evaluating similarity along x1
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Wrapper and Filter Approaches

Evaluate Classifier 
Metric= Precision

Fitness Function 
(based on Precision)

Evolutionary Search

Complete Attribute Set

Wrapper Approach Filter Approach

Complete Attribute Set

Individual in EA population
defines attribute subset

Fitness Function
(based on attribute subset

, e.g. Information - Cardinality)

Evolutionary Search

Classifier 
(based on attribute subset 

obtained from best of last generation)

Classifier Metrics

E
A
 a
s 
Fi
lt
e
r

Create Predictor
Sorter by Prediction

Selection of best 20%

Classifier 
(based on attribute subset)

Individual in EA 
population defines 
attribute subset
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Evolutionary Search for Designing A Fuzzy IBM 
(Predictor) using a Wrapper Approach

CBR EVALUATION

Pop.(i+1)

Fuzzy IBM EVALUATION

Mutation

Elitist

(best from Pop i)
P(selection)FitnessPop.(i)

Chromosome
Decoder

Uniform Mutation
Gaussian Mutation

Original

Best

EVOLUTIONARY ALGORITHM

|ˆ| yyf −−=

Fitness Function 
Assess chromosome quality by looking at performance 

of corresp. model instance prediction error

Retrieval. Similarity, Local models:

Weights, GBF Parameters, a

Leave-One-Out Testing

Fuzzy IBM
Prediction

Similar
Unit

Object
Similarities &
Local Models

(4) Aggregation: 
RUL Prediction

(1) Retrieve Nearest

Neighbors

Maintenance
& Utilization

CB

Instance of
F-IBM
Model

Prediction error

XML Config
File

Probe
Case

Select 
Probe

Remaining 
Useful Life 

(RUL)

[ ] ( ) ( ) ( )[ ][ ]α , ..., ,, ,,  ...  221121 nnn bababawwwChromosome:
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Chromosome

Chromosome
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Chromosome
Porbability of 

being selected
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maximize f
therefore 

the sign “-”

|ˆ| yy −
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Pop contains 100 

chromosomes         i = 
1, 200 (GenMax)

w1 = 0 →→→→ X1 is NOT selected & we do not care about (a1, b1) – since we do not use X1
w1 = 1 →→→→ X1 IS selected & (a1, b1) define how tolerant (high a1, low b1) or strict (low a1, high b1) we want to be when evaluating similarity along x1

(2) Evaluate

Similarity

(3) Evaluate 
Local models
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Evolutionary Search for Designing A Fuzzy IBM 
(Classifier) using a Wrapper Approach

CBR EVALUATION

Pop.(i+1)

Fuzzy IBM EVALUATION

Mutation

Elitist

(best from Pop i)
P(selection)FitnessPop.(i)

Chromosome
Decoder

Uniform Mutation
Gaussian Mutation

Original
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EVOLUTIONARY ALGORITHM
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Fitness Function: Quantify Quality of Chromosome
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Selection of 
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(2) Evaluate

Similarity

(3) Evaluate 
Local models

(4) Aggregation: 
RUL Prediction
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Effect of Changing  Parameters {a,b,c}

µA x( )=
1

1+
x −ci
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2b
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(a) Changing 'a'

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1

(b) Changing 'b'
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(c) Changing 'c '
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(d) Changing 'a' and 'b'

Increasing a Increasing b

Increasing c
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5. Case Study: Prediction of Best Units for 
Asset Selection

- Asset Selection for Mission Reliability: A locomotive  
example

- Data Collection, Baselines, and Experiments 
- Peer Learning Methodology
- Results & Conclusions
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Asset Selection Outline

• Problem Description

• Data Collection and Experiments Set-Up

• Proposed Peer-Learning Methodology

• Results

• Conclusions
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Asset Selection Outline

• Problem Description

- Mission Reliability

- The Selection Problem

• Data Collection and Experiments Set-Up

• Proposed Peer-Learning Methodology

• Results

• Conclusions
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New learning approaches can address early 
phases of new platform deployment with 
limited operational and sensor data.

-Learning using existing utilization and maintenance 
history improves our ability to select the best units for a 
mission, leading to better utilization of existing assets.

-Learning from peers is a robust approach to rapid 
learning from limited data. 

-Evolutionary Learning provides a comprehensive 
framework for automating the design and maintenance 
of a classifier used for selection of the best assets.

The Premise
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Asset Selection Based on Predicted Life

Half Day

Weeks

Days

Months

Sensor Data
Utilization Data

Maintenance Logs
Repair Data

Fuzzy + EA

Equipment

Ventilation

Engine 

System

Engine Fuel

Operator/

Other

Traction 

System

Alt & Aux. 

Power

Compressed 

Air

Engine 

Cooling & 

Lube

Train 

Control

Communication 

System

Collective Mind for Equipment Prognostics and Pulse Reliability

Diesel Electric Locomotives: 
Complex Electro-Mechanical Systems

Pulse Reliability Problem : 
Select best  N units from fleet to 
perform during an operational 
pulse of duration T, without failures

T

time to failure

Approach : Predict individual 
units’ time-to- failure based on 
unit track record and peers 
from collective

Fleet of Locomotives

n Fleet, Units, and Collective

n Fleet is a collection of points in a sparsely 
populated, high dimensional feature space 

n Each point (unit in the fleet) has a record 
in a DB, describing  model, configuration, 
operational and maintenance information

n Each point has a collective of peers

n Collective of peers are units whose 
individual experience can be composed to 
better predict the unit’s performance

n To adapt to changes in units or peers, we 
will re- assess the collective over time

n Locomotive Fleet

n 7,000 units (60% with remote monitoring 
and satellite uplink) to provide time-
stamped failure codes and state info.

time
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Metric of Success: Selection Precision

Mission 

20 units

Metric:
Precision:  #actual best

#selected
= 50% (in this case)Pick best 20% = 4 units
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Asset Selection Outline

• Problem Description

• Data Collection and Experiments Set-Up

• Data Sources

• Experiments: Metrics and Baselines

• Proposed Peer-Learning Methodology

• Results

• Conclusions



Data Compilation and Experiments

Data Categories:
- Configuration Information (Source: GE Rail)

- Maintenance & Repair Information
Fault Codes (Source: Locomotive’s EOA)
Recommendations (Source: GE Rail)
Repairs  (Source: GE Rail / Railroads)

- Utilization Information (Source: Railroads)

Data Links

GE Rail Locomotives Services

Railroad Yards

Utilization Information
(1 download/~ 30 days)

Locomotives with EOA Service

Fault codes 
(3 uploads/day)

Recommendations
(4-8 Rx/yr)

GE Rail/Railroads Repair Shops

Repair Execution
(4-8 Repairs/yr)
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Data Collection and Compilation: Tables Relationships

Master File

Configuration

Utilization
Summary

[Train]

Utilization
History

[Train/Dwld]

Rx & Repair
Summary

[Train]

Rx & Repair 
History

[Train/Rec.Id]

Fault History
[Train/Fault.Code]

Diagnostic
Reasoner Repair Execution

Feedback

RX. Id - Subsystems

RX. Id – Repair Type

RX. Id - Urgency
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Data Slices

Slice 1
Slice 2

Slice 3

Repair

Recommendation

22 May 2002 01 Nov 2002 01 May 2003

262 units 634 units 845 units 965 units

20% Threshold 
= 49 days

20% = 52 units

20% Threshold 
= 52 days

20% = 127 units

20% Threshold 
= 75 days

20%= 169 units

20% Threshold 
= 71 days

01 Nov 2003

Full fleet
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Asset Selection Outline

• Problem Description

• Data Collection and Experiments Set-Up

• Proposed Peer-Learning Methodology
- Definition of Peers

- Fuzzy Instance-based Classifier (FIBC)

- Evolution of FIBC Design

• Results

• Conclusions
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Current Location of All Available Locomotives 

For each locomotive, we know its 
position, configuration, 
utilization, and maintenance 
information 

Mission Requirements 
# Locomotives needed: 12
Duration: 9 days
Start date: + 48 hrs
Distance: 2,435 miles
Average Miles/day 304 m/day Max 

Grade/Elevation: 2%
Climate, Tunnel operation: desert, hot

Loco 5700

Loco Number: 5700
Design and Configuration

Type: AC4400
Electrical System: Bosch
…

Utilization Information
Age: 2.9 years
Mileage: 247,567 mi.
Average miles/day: 299

Maintenance Information
Time elapsed since last repair:   10 days
Median time between repairs 60 days
Median time from repair to next 
recommendation (Rx) 52 days
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Identifying Loco 5700’s Peers

P1

P2

P3P4

P6
P5

P7

= Peers of Loco 5700

f2: miles/day

f1: Rx/Year 

Peers of Train 5700Train 5700

f3: ?? 

Experiments focused on defining the relevant attributes 
(f1, f2, …, fn) for defining peers 

The cluster of peers defines the collective for this unit
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Asset Selection Outline

• Problem Description

• Data Collection and Experiments Set-Up

• Proposed Peer-Learning Methodology

• Results
• Experiment 1: Top 20% Current Performers

– Robustness

• Experiment 2: Top 52 units Current Performers

• Experiment 3: Top 20% Future Performers

• Experiment 3 bis: Top 20% Future Performers 
– Static vs Dynamic Models

• Conclusions
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days

Median time between failures

Baseline – Single-Heuristic based Selection

- Heuristic selection of N1 units (based on full fleet)

Objective: Create heuristic knowledge driven baseline.

Target: time 
between failures

> 71 days

Random selection 
in target area:  ~20%

N/A20%Random

100%49%
Lowest Ratio: 

Recommendations / Age 
[Rx/yr]

95%38%
Lowest Percentage of: 
Subsystem 10 Failures

58%29%
Highest Percentage 

Hours Moving

97%26%
Highest Miles/ Hours 

Moving

79%24%
Highest Energy (MWHRS) 

generated

100%18%Newest Units 

81%17%Lowest Mileage

% Data 
Correct

% of Correctly  
Classified Units  

= TP/20%  
Single Heuristic

TNFNF

FPTPT

FT

Ground 
Truth

Predicted

Ground Truth

> 71 

days

20%

< 71 

days

80%

Predicted

TP

FP

FN
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48.1%

55.6%

60.4%

41%

55%

32%

46%

50%

20% 20% 20%

54%

20.0%

25.0%
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Evolved Peers

Peers

Non Peer

Random

3 x better
than random
1.2 x better

than heuristics

(52 out of 262 units) (127 out of 634 units) (169 out of 845 units)

Exp 1: Peers Evolution over Time:
Estimating Best Current performers (20%)

(Targeting top 20% of units for each Time Slice)
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55.8%
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Evolved Peers

Non Peer-Heuristics
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Exp 2: Peers Evolution over Time: 
Estimating best Current performers (52 units)

10 x better
than random
1.7 x better

than
heuristics

(52 out of 262 units) (52 out of 634 units) (52 out of 845 units)

(Targeting Top 52 units for each Time Slice)
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Exp 3: Peers Evolution over Time:
Estimating best future performers

2.5 x better

than random
1.5 x better 

than heuristics

(52 out of 262 units) (127 out of 634 units) (169 out of 845 units)

(Targeting top 20% of units for each Time Slice)
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Experiment 4: Comparing Evolved, Dynamic (updated)
Peers with Evolved Static (Non-updated) Peers:
Estimating Best Future Performers

The Benefit of Automated Peer Redesign/Update 
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Asset Selection Outline

• Problem Description

• Data Collection and Experiments Set-Up

• Proposed Peer-Learning Methodology

• Results

• Conclusions

• Summary

To Future Work.
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Attribute Weighing using GA [Slice 3]
(for prediction, ranking, and selection of best units)

Feature Weight a b

RY_REC/YR 9.11 5.55 3.73

RY_REC/100K_MILES 8.81 5.35 2.57

RY_REC/100K_ENGINE_HRS 7.35 35.94 2.67

REC_COUNT_RY 5.69 8.49 3.37

RY_REC/100K_ENG_HRS_MOVE 4.08 10.06 2.75

TOT_REC_COUNT 1.33 18.70 3.20

RED_REC_COUNT 0.87 0.99 3.16
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Conclusions

• Validating the Premise

- Combining limited utilization and maintenance history improves our ability 
to select the best units for a mission. 

- Evolved Peers provided the best overall accuracy (60.35% = over 3 times 
better than random selection) for past performance.  When the selection was 
limited to a small fixed number of units, Evolved Peers provided an accuracy 
of 63.5% (over 10 times better than random selection) for past 
performance.  

- Evolved Peers provided the best overall accuracy (55% = 2.7 times better 
than random selection and 1.5 x better than best heuristics) for future 
performance

- Construction of local fuzzy models does not require computing a distance in 
the n-dimensional feature space

• Operational Impact:

- Robustness to information loss exhibited by peer-based approach will 
enable mission reliability for minimally instrumented platforms operating 
with limited bandwidth 
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6. Future Work

- Improving the Feature Space: GP for Attribute Construction
- Improving Fitness Function: Accuracy, Confidence, Info. Theory
- Improving Aggregation: Adapting Kernel Based Regressions
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Future Work
• Extend evolutionary search

• from attribute selection and weighting to attribute construction

• Improve fitness function

• to address classifier accuracy and confidence, and representation 
parsimony

• Improve aggregation models 

To References
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Future Work
• Extend evolutionary search from attribute selection and 
weighting to attribute construction.

Use Genetic Programming to automate attribute construction and evolve 
attribute space with functional compositions of primitive attributes

( ) ( )[ ] ( ) ( )[ ][ ]αDDDDDDD babawwwhgfwwwhgf , ..., , , ..., ,,*...**,..., ..., ,,*...** 112121111

( )[ ] ( ) ( )[ ][ ]αDDD babawww , ..., , , ..., ,, 1121

GP:

GA:

A sentence derived from a grammar
that defines a syntactically correct

functional composition of attributes 
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• Extend evolutionary search.

• Improve fitness function to address classifier accuracy and 
confidence, and representation parsimony

Future Work: Improving the Fitness Function

classifier accuracy, confidence and representation parsimony
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Where:

Classifier_Inaccuracy = (FN+FP)/(TP+FP+FN+TN)

TotPred = (TP+FP+FN+TN)

nmini = number of minority decisions in i
th retrieval

Ki = number of points retrieved for case I (Cardinality of i
th retrieval)

Retrieval_Inaccuracy (i)= (nmini )/ Ki = Cardinality of Non-Mode/TotalCardinality  for i
th retrieval

Typical values:

Assumptions:

Two-class problem or 

Multiple class problem with 
indistinguishable errors
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Future Work
• Extend evolutionary.

• Improve fitness function

• Improve aggregation models

We could use the similarity measures as kernel functions for each dimension i
and create kernel-based regressions

We would use local search methods to obtain the parameters of the kernel-
based regression, within each trial of the EA’s. 
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Future Work: Improving Aggregation
0th Order Approximation (weighted 

average) 

- It works well when interpolating
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0th Order Approximation (weighted 
average) 

- It  is lousy when extrapolating

- Bounded by the minimum & maximum
of its arguments
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Future Work: Improving Aggregation
1st Order Approximation (Weighted 

Linear Regression) 
- Weight each data point by its 

similarity degree with the probe Q
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of its arguments
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From my Web site: www.rpi.edu/~bonisp

Go to: http://www.rpi.edu/~bonisp/publications-new.html

Further Resources

Relevant papers that you can download:

"Hybrid Soft Computing Systems: Industrial and Commercial Applications", P. P. Bonissone, Y-T Chen, K. Goebel and P. S. Khedkar, Proceedings of 
the IEEE, pp 1641--1667, vol. 87, no. 9, Sept. 1999.  http://www.rpi.edu/~bonisp/NASA-course/hybridSC99.pdf

"When will it break? A Hybrid Soft Computing Model to Predict Time-to-break Margins in Paper Machines", P. Bonissone and K. Goebel, Proc. SPIE 
2002 , pp. 53--64, Aug. 2002, Seattle, WA http://www.rpi.edu/~bonisp/NASA-course/webbreakage.pdf

"Evolutionary Optimization of Fuzzy Decision Systems for Automated Insurance Underwriting", P. Bonissone, R. Subbu, and K. Aggour, Proc. FUZZ-
IEEE 2002, pp. 1003 - 1008, May 2002, Honolulu, HI. http://www.rpi.edu/~bonisp/NASA-course/wcci2002.pdf

“Automating the Quality Assurance of an On-line Knowledge-Based Classifier By Fusing Multiple Off-line Classifiers", P. Bonissone, Inform. Proc. & 
Management of Uncertainty (IPMU), Perugia, Italy, July 2004     http://www.rpi.edu/~bonisp/NASA-course/IPMUv8.pdf

"Development and Maintenance of Fuzzy Models in Financial Applications", P. Bonissone, Proc. SMPS 2004, , Oviedo, Spain, September 2004.
http://www.rpi.edu/~bonisp/NASA-course/Oviedo2004.pdf

"Six Sigma Quality Applied Throughout the Lifecycle of and Automated Decision System", A. Patterson, P. Bonissone, andM. Pavese, Journal of 
Quality and Reliability International, 21:275-292, 2005 http://www.rpi.edu/~bonisp/NASA-course/SixSigma.pdf

"An Evolutionary Process for Designing and Maintaining a Fuzzy Instance-based Model (FIM)", P. Bonissone, A. Varma, K. Aggour, 1st Workshop 
Genetic Fuzzy Systems (GFS 2005), Granada, Spain, March 2005. http://www.rpi.edu/~bonisp/NASA-course/piero-gfsmod.pdf

Predicting the Best Units within a Fleet: Prognostic Capabilities Enabled by Peer Learning, Fuzzy Similarity, and Evolutionary Design Process", P. 
Bonissone, A. Varma,. FUZZ-IEEE 2005, pp 312-318, Reno NV, May 22-25, 2005. 

http://www.rpi.edu/~bonisp/NASA-course/fuzz05anilfinalv27.pdf
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Questions ?
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Thank You!


