New Algorithms for Diagnosis of Multiple Faults

Stephen Boyd Dimitry Gorinevsky Argyris Zymnis Electrical Engineering Department, Stanford University

AvSafe Tech. Conference, Washington D.C., 11/18/09

Where it Fits

- IVHM Milestone 1.2.2.2: Develop Bayesian and Hybrid Reasoning Methods for State Estimation and Diagnosis.
- demonstrated on ADAPT power system testbed
- method as described handles Boolean faults (*i.e.*, present or not) and continuous measurements
- extensions (not reported here) handle other cases
- additive fault signature model means gross faults cannot be handled

Our Goal, Approach, and Method

we have

- noisy measurements from a system
- a set of faults that can occur *in any combination* (in particular, *multiple faults* can occur)
- a statistical model of the measurements and fault occurences
- goal: develop a scalable algorithm to diagnose which combination of faults has occurred
- our approach: statistical (Bayesian)
- our method: based on recent developments in *convex optimization*

Outline

- statistical fault/measurement model
- maximum a posteriori (MAP) fault diagnosis
- relaxed MAP approach
- some examples
- quantized measurements
- conclusions

Measurement Residuals

- measurement/fault model: z = F(x) + w
 - $z \in \mathbf{R}^m$ is vector of m measurements
 - $x \in \{0,1\}^n$ is fault pattern (2ⁿ possible values)
 - $w \in \mathbf{R}^n$ is vector of random or unmodeled variables, noises
 - F is a complex function mapping faults and noises to measurements
- measurement *residuals*: y = z F(0)

difference of actual and predicted measurement, assuming

- the model is correct
- there is no noise

Linearized Residuals and Fault Model

- linearized residuals model: $y = \sum_{i=1}^{n} x_i a_i + v$
 - $a_i \in \mathbf{R}^n$ is fault signature (or pattern) for fault *i*
 - (noise free) residual is sum of fault patterns for faults that occur
 - can write as y = Ax + v, where $A \in \mathbf{R}^{m \times n}$ is fault signature matrix
- statistical model: we'll assume
 - noise $v \sim \mathcal{N}(0, \sigma^2 I)$
 - faults occur independently, with probabilities p_1, \ldots, p_n

(but our approach works with more general assumptions . . .)

• yields a Bayes net with very specific structure

Bayesian Fault Diagnosis Formulation

• we are given

- model parameters $A,\,\sigma$
- prior fault probabilities $p \in \mathbf{R}^n$
- the measurement \boldsymbol{y}
- P(x|y) is (posterior) probability that fault pattern x has occurred
- maximum a posteriori probability (MAP) estimate of fault pattern:
 - $x \in \{0, 1\}$ which maximizes P(x|y)
 - the most likely fault pattern, given the measurement
 - can add weights to trade-off false positives, false negatives, . . .

MAP Fault Diagnosis

• fault pattern loss:

$$l_{y}(x) = \log P(0|y) - \log P(x|y)$$

= $(1/2\sigma^{2}) (||y - Ax||_{2}^{2} - ||y||_{2}^{2}) + \lambda^{T}x$

with $\lambda_j = \log((1-p_j)/p_j)$

• MAP estimate is solution of optimization problem

minimize
$$l_y(x)$$

subject to $x_j \in \{0, 1\}$

with variable $x \in \{0,1\}^n$

Ambiguity Group

- ambiguity group: set of fault patterns with nearly optimal loss
- these are also candidates for the true fault pattern
- far more useful in practice than just the MAP solution

Solving MAP Problem (Globally)

- sadly, you can't (in general); it's a (hard) Boolean quadratic program
- direct enumeration: evaluate $l_y(x)$ for all 2^n fault patterns
 - not practical for $n>15\ {\rm or}\ {\rm so}$
- branch and bound, other mixed integer QP methods
 - can be very slow
- not clear that global solution of MAP problem gives better estimation performance than a good heuristic solution of MAP problem

Solving MAP Problem (Approximately)

- 'approximately' means: \hat{x} may not have (globally) minimum loss
- simple (partial) enumeration methods (widely used!)
 - enumerate $l_y(x)$ for all n single-fault patterns
 - enumerate $l_y(x)$ for all n(n-1)/2 double-fault patterns
- local optimization, *e.g.*,
 - start from x = 0
 - flip bits one at a time
 - accept any changes that decrease l_y
- these methods can work well, in some (simple) cases

Our Method

- form (computationally tractable) *convex relaxation* of MAP problem
- solve relaxation using fast custom method
- round relaxed estimates
- carry out simple local optimization

efficient, scales to large problems, and seems to work very well, even in challenging cases

QP Relaxation of MAP Problem

minimize $l_y(x)$ subject to $0 \le x_j \le 1$

- allow variables x_i to be *between* 0 (false) and 1 (true) (sometimes called 'soft decisions')
- a convex QP, easily solved
- solution z gives lower bound on loss, *i.e.*,

 $l_y(x) \ge l_y(z)$ for all $x \in \{0,1\}^n$

- if $z \in \{0,1\}^n$, it's MAP optimal
- if $\lambda \ge (1/\sigma^2)A^Ty$, x = 0 is MAP optimal

AvSafe Tech. Conference, Washington D.C., 11/18/09

Rounding the Relaxed Solution

to get fault estimate (and ambiguity group) from z:

- for each $t \in (0, 1)$, round all $z_i \ge t$ to one, and all $z_i < t$ to zero (can be done efficiently by sorting z_i)
- evaluate $l_y(\hat{x})$
- pattern with smallest $l_y(\hat{x})$ is our (relaxed MAP) estimate x^{rmap}
- patterns with nearly smallest $l_y(\hat{x})$ form (approximate) ambiguity group

Local Optimization

 start with list of K patterns with smallest values found after rounding, sorted by loss (this is our initial ambiguity group estimate)

$$x^{(1)},\ldots,x^{(K)}$$

- cycle through index *j*
 - tentatively replace $x_j^{(1)}$ with $1 x_j^{(1)}$ and evaluate loss
 - if this pattern has lower loss than $x^{(K)}$, add it to list, delete $x^{(K)}$
 - in particular, if this pattern has lower loss than $x^{(1)}$, it replaces $x^{(1)}$ as the least loss pattern found so far
 - continue until there are no changes over one sweep of index j

Approximate MAP Estimation

approximate relaxed MAP problem:

minimize $l_y(x) + \kappa \psi(x) = l_y(x) - \kappa \sum_{j=1}^n \log(x_j(1-x_j))$

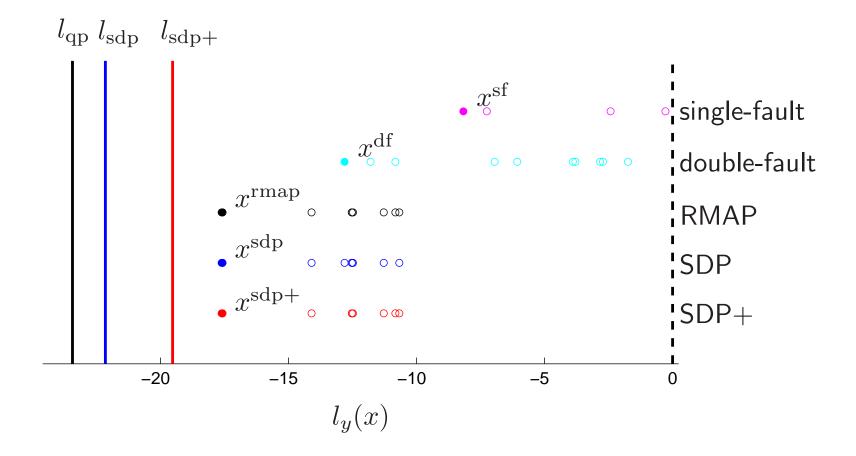
with implicit constraint $x_i \in (0, 1)$

- parameter $\kappa > 0$ controls quality of approximation
- solution is no more than $2n\kappa$ suboptimal for RMAP problem
- an unconstrained smooth convex problem, readily solved by Newton type methods, even for very large problems

Small Example

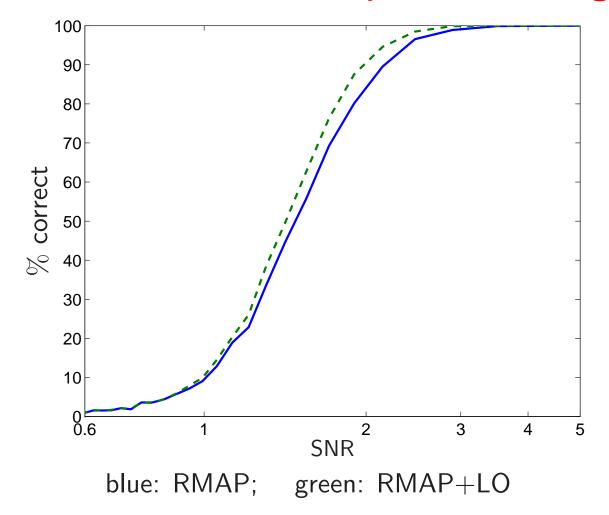
- m = 50 measurements
- n = 100 potential faults
- A_{ij} chosen from $\mathcal{N}(0,1)$ distribution
- $p_j = 0.05$ (so expected number of faults is 5)
- $\sigma = 1$, corresponding to signal-to-noise (SNR) ≈ 2.2
- runtime around 20ms for RMAP, 2s for SDP, 20min for SDP+
- all relaxations recover MAP solution (verified using branch & bound, after 110 iterations)
- over many runs, probability of exact fault detection is 95%

Small Example: Results from Single Run



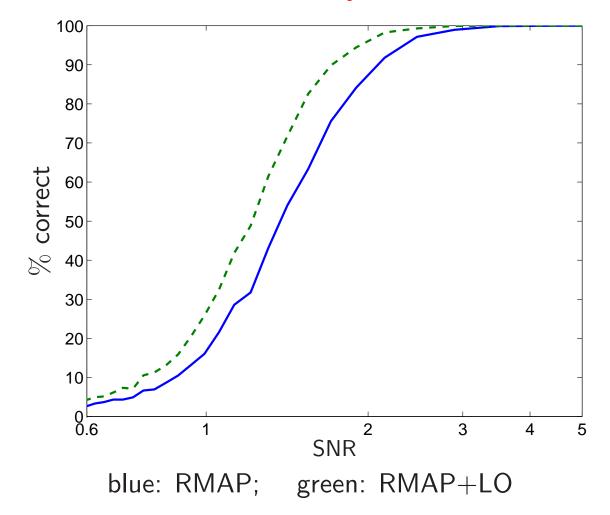
AvSafe Tech. Conference, Washington D.C., 11/18/09

Performance vs SNR: Top Hit Percentage



AvSafe Tech. Conference, Washington D.C., 11/18/09

Performance vs SNR: Top 10 **Hit Percentage**

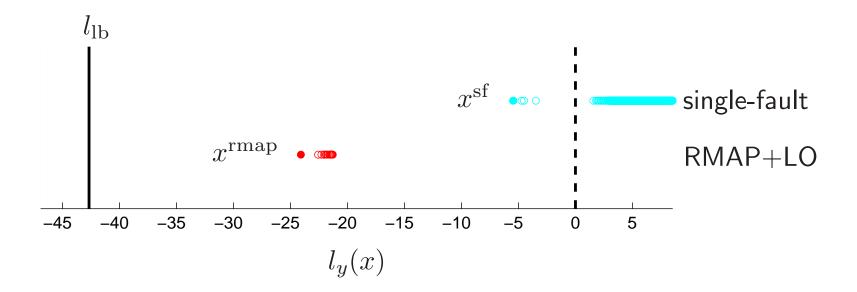


AvSafe Tech. Conference, Washington D.C., 11/18/09

Larger Example

- m = 10000 measurements
- n = 2000 potential faults
- A is sparse, with 1% of entries nonzero; nonzero entries $\mathcal{N}(0,1)$ (so, each measurement affected by around 20 faults)
- $p_j = 0.002$ (so, around 4 faults on average)
- $\sigma = 1.5$, corresponding to SNR ≈ 0.5
- runtime about 20s (Matlab implementation; would be much faster in C)
- over many runs, probability of exact fault detection is 92%

Larger Example: Results from Single Run



Conclusions

- when only one fault occurs, fault estimation is 'easy'
- when multiple faults can occur, fault estimation is hard
- we've proposed a new method for this case, leveraging convex optimization
- the method is efficient, scalable, and seems to work well
- extension to quantized measurements also works well, even with very coarse quantization

Extensions & Variations

- quantized measurements
- more sophisticated local optimization
- correlated Gaussian measurement noise
- Laplacian, other noise distributions
- (logical) constraints on faults, e.g., $z_i \leq z_j$
- more general measurement nonlinearity (use linearized A(x) in Newton method)
- dynamic (time-varying) case

References

- Relaxed Maximum a Posteriori Fault Identification, A. Zymnis, S. Boyd, and D. Gorinevsky, Signal Processing 2009
- Mixed Linear System Estimation and Identification, A. Zymnis, S. Boyd, and D. Gorinevsky, to appear, Signal Processing 2010
- Mixed State Estimation for a Linear Gaussian Markov Model, A. Zymnis, S. Boyd, and D. Gorinevsky, to appear, IEEE Signal Processing Letters

(full source code for all available on-line)