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Where it Fits

• IVHM Milestone 1.2.2.2: Develop Bayesian and Hybrid Reasoning

Methods for State Estimation and Diagnosis.

• demonstrated on ADAPT power system testbed

• method as described handles Boolean faults (i.e., present or not) and
continuous measurements

• extensions (not reported here) handle other cases

• additive fault signature model means gross faults cannot be handled
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Our Goal, Approach, and Method

• we have

– noisy measurements from a system
– a set of faults that can occur in any combination

(in particular, multiple faults can occur)
– a statistical model of the measurements and fault occurences

• goal: develop a scalable algorithm to diagnose which combination of

faults has occurred

• our approach: statistical (Bayesian)

• our method: based on recent developments in convex optimization
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Outline

• statistical fault/measurement model

• maximum a posteriori (MAP) fault diagnosis

• relaxed MAP approach

• some examples

• quantized measurements

• conclusions
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Measurement Residuals

• measurement/fault model: z = F (x) + w

– z ∈ Rm is vector of m measurements
– x ∈ {0, 1}n is fault pattern (2n possible values)
– w ∈ Rn is vector of random or unmodeled variables, noises
– F is a complex function mapping faults and noises to measurements

• measurement residuals: y = z − F (0)

difference of actual and predicted measurement, assuming

– the model is correct
– there is no noise
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Linearized Residuals and Fault Model

• linearized residuals model: y =
∑n

i=1 xiai + v

– ai ∈ Rn is fault signature (or pattern) for fault i
– (noise free) residual is sum of fault patterns for faults that occur
– can write as y = Ax+ v, where A ∈ Rm×n is fault signature matrix

• statistical model: we’ll assume

– noise v ∼ N (0, σ2I)
– faults occur independently, with probabilities p1, . . . , pn

(but our approach works with more general assumptions . . . )

• yields a Bayes net with very specific structure
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Bayesian Fault Diagnosis Formulation

• we are given

– model parameters A, σ
– prior fault probabilities p ∈ Rn

– the measurement y

• P (x|y) is (posterior) probability that fault pattern x has occurred

• maximum a posteriori probability (MAP) estimate of fault pattern:

– x ∈ {0, 1} which maximizes P (x|y)
– the most likely fault pattern, given the measurement
– can add weights to trade-off false positives, false negatives, . . .
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MAP Fault Diagnosis

• fault pattern loss:

ly(x) = logP (0|y) − logP (x|y)

=
(

1/2σ2
) (

‖y − Ax‖2
2 − ‖y‖2

2

)

+ λTx

with λj = log((1 − pj)/pj)

• MAP estimate is solution of optimization problem

minimize ly(x)
subject to xj ∈ {0, 1}

with variable x ∈ {0, 1}n
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Ambiguity Group

• ambiguity group: set of fault patterns with nearly optimal loss

• these are also candidates for the true fault pattern

• far more useful in practice than just the MAP solution
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Solving MAP Problem (Globally)

• sadly, you can’t (in general); it’s a (hard) Boolean quadratic program

• direct enumeration: evaluate ly(x) for all 2n fault patterns

– not practical for n > 15 or so

• branch and bound, other mixed integer QP methods

– can be very slow

• not clear that global solution of MAP problem gives better estimation
performance than a good heuristic solution of MAP problem
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Solving MAP Problem (Approximately)

• ‘approximately’ means: x̂ may not have (globally) minimum loss

• simple (partial) enumeration methods (widely used!)

– enumerate ly(x) for all n single-fault patterns
– enumerate ly(x) for all n(n− 1)/2 double-fault patterns

• local optimization, e.g.,

– start from x = 0
– flip bits one at a time
– accept any changes that decrease ly

• these methods can work well, in some (simple) cases
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Our Method

• form (computationally tractable) convex relaxation of MAP problem

• solve relaxation using fast custom method

• round relaxed estimates

• carry out simple local optimization

efficient, scales to large problems, and seems to work very well, even in
challenging cases
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QP Relaxation of MAP Problem

minimize ly(x)
subject to 0 ≤ xj ≤ 1

• allow variables xi to be between 0 (false) and 1 (true)
(sometimes called ‘soft decisions’)

• a convex QP, easily solved

• solution z gives lower bound on loss, i.e.,

ly(x) ≥ ly(z) for all x ∈ {0, 1}n

• if z ∈ {0, 1}n, it’s MAP optimal

• if λ ≥ (1/σ2)ATy, x = 0 is MAP optimal
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Rounding the Relaxed Solution

to get fault estimate (and ambiguity group) from z:

• for each t ∈ (0, 1), round all zi ≥ t to one, and all zi < t to zero
(can be done efficiently by sorting zi)

• evaluate ly(x̂)

• pattern with smallest ly(x̂) is our (relaxed MAP) estimate xrmap

• patterns with nearly smallest ly(x̂) form (approximate) ambiguity group
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Local Optimization

• start with list of K patterns with smallest values found after rounding,
sorted by loss (this is our initial ambiguity group estimate)

x(1), . . . , x(K)

• cycle through index j

– tentatively replace x
(1)
j with 1 − x

(1)
j and evaluate loss

– if this pattern has lower loss than x(K), add it to list, delete x(K)

– in particular, if this pattern has lower loss than x(1), it replaces x(1)

as the least loss pattern found so far
– continue until there are no changes over one sweep of index j
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Approximate MAP Estimation

approximate relaxed MAP problem:

minimize ly(x) + κψ(x) = ly(x) − κ
∑n

j=1 log(xj(1 − xj))

with implicit constraint xi ∈ (0, 1)

• parameter κ > 0 controls quality of approximation

• solution is no more than 2nκ suboptimal for RMAP problem

• an unconstrained smooth convex problem, readily solved by Newton
type methods, even for very large problems
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Small Example

• m = 50 measurements

• n = 100 potential faults

• Aij chosen from N (0, 1) distribution

• pj = 0.05 (so expected number of faults is 5)

• σ = 1, corresponding to signal-to-noise (SNR) ≈ 2.2

• runtime around 20ms for RMAP, 2s for SDP, 20min for SDP+

• all relaxations recover MAP solution
(verified using branch & bound, after 110 iterations)

• over many runs, probability of exact fault detection is 95%
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Small Example: Results from Single Run
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Performance vs SNR: Top Hit Percentage
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Performance vs SNR: Top 10 Hit Percentage
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Larger Example

• m = 10000 measurements

• n = 2000 potential faults

• A is sparse, with 1% of entries nonzero; nonzero entries N (0, 1)
(so, each measurement affected by around 20 faults)

• pj = 0.002 (so, around 4 faults on average)

• σ = 1.5, corresponding to SNR ≈ 0.5

• runtime about 20s (Matlab implementation; would be much faster in C)

• over many runs, probability of exact fault detection is 92%
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Larger Example: Results from Single Run
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Conclusions

• when only one fault occurs, fault estimation is ‘easy’

• when multiple faults can occur, fault estimation is hard

• we’ve proposed a new method for this case, leveraging convex
optimization

• the method is efficient, scalable, and seems to work well

• extension to quantized measurements also works well, even with very
coarse quantization
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Extensions & Variations

• quantized measurements

• more sophisticated local optimization

• correlated Gaussian measurement noise

• Laplacian, other noise distributions

• (logical) constraints on faults, e.g., zi ≤ zj

• more general measurement nonlinearity
(use linearized A(x) in Newton method)

• dynamic (time-varying) case
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