

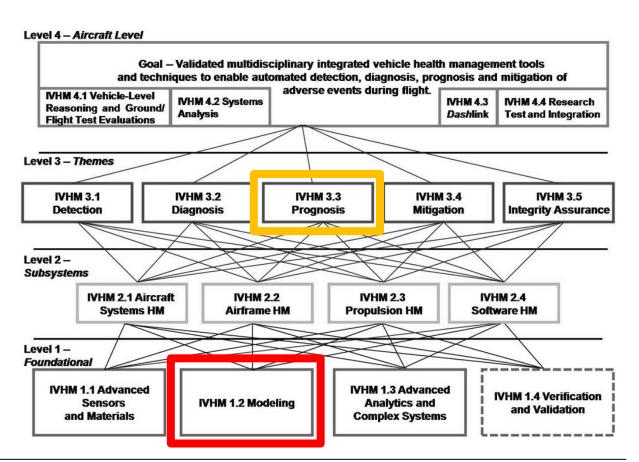
Damage Propagation Modeling in a Particle Filtering Framework

Bhaskar Saha, Abhinav Saxena, Kai Goebel, Jose Celaya, Sankalita Saha

Aviation Safety Program Technical Conference November 17-19, 2009 Washington D.C.

Outline

- Problem Statement
- Background
- IVHM milestones(s) being addressed
- Approach
- Results
- Conclusions
- Future Plans



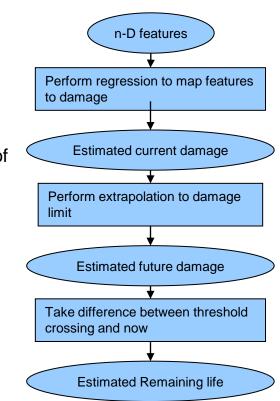
2009 Aviation Safety Program Technical Conference

- Prognostics
 - Investigate algorithms that allow prediction of the time at which a component will no longer perform a particular function
 - Lack of performance is most often component failure
 - The predicted time becomes then the "remaining useful life" (RUL)
- State-of-practice and state-of-art
 - Data-driven techniques for prognostics based on machine learning
 - Statistical extrapolation
 - Polynomial regression
 - Probabilistic techniques
 - Gaussian process regression
 - Relevance vector machine
 - Neural networks
 - Model-based approaches slowly getting more traction
 - Improved understanding of the systems
 - Enhanced computational capabilities
- Challenges
 - Absence of sufficiently large data sets
 - Uncertainty management
 - Performance assessment

- The work is performed under task 1.2.3.2 "Develop and evaluate data-driven, physics-based and hybrid prognostic models and methodologies."
 - Data-driven techniques investigated
 - Gaussian Process Regression
 - Relevance Vector Regression
 - Neural Networks
 - "Standard" regression techniques
 - Model-based techniques
 - Variations of Kalman Filters
 - Extended Kalman Filters
 - Unscented Kalman Filters
 - Variations of Particle Filters
 - Rao-Blackwellized Particle Filter
 - Fixed Lag Particle Filter

Background: Data-Driven Modeling

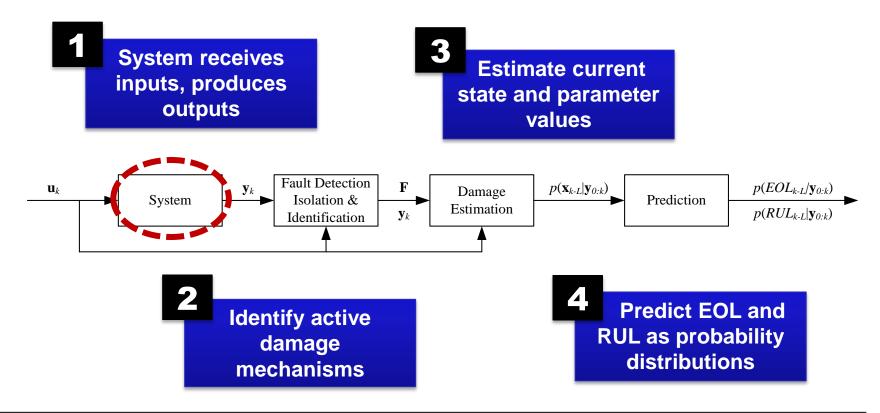
- Use run-to-failure data sets representing a range of operating conditions and fault modes
- Develop damage propagation model
 - by using suitable features and
 - learning characteristics such that one can
 - determine remaining life in a partial data set
- Advantage
 - No need to have a deeper understanding of the underlying physics of the process
- Limitations
 - Sufficient amounts of data for learning are hard to come by
 - Particularly for new systems
 - Or "fleets of size one"
 - Low confidence predictions
 - Rigorous integrated methods for uncertainty management not available
 - Methods often break under unexpected (unseen) situations
 - Changes in environmental and operational conditions
 - Material or process variations
 - Maintenance operations, self healing phenomena, etc.
 - Difficulty comparing results from different approaches
 - Lack of metrics



Background Physics-Based Modeling

NASA

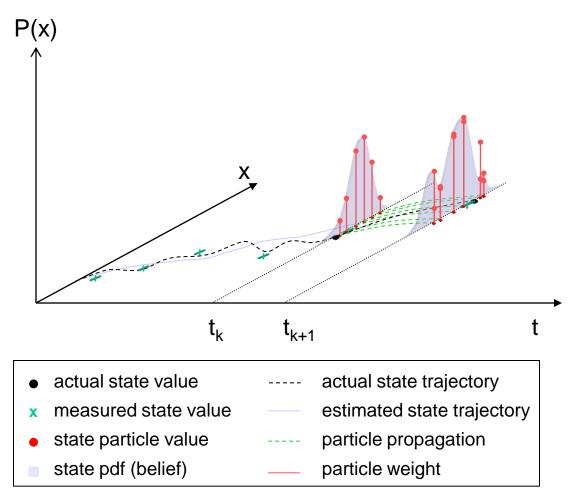
- Physics-based model of system
 - Describe the dynamics of the system under nominal operation using first principles (or other physics-based techniques)
- Physics-based damage propagation model
- Prediction algorithm



2009 Aviation Safety Program Technical Conference

- Particle Filter offer a Bayesian framework that allows estimation of current state of damage and then propagate the damage into future without simplistic assumptions of Normality and model linearity in a rigorous statistical manner.
- Salient features of Particle Filters
 - Model adaptation
 - State estimation, tracking and prediction
 - Nice tradeoff between MC and KF
 - Useful in both diagnostics and prognostics
 - Represent uncertainty
 - Manage uncertainty

 Propagates particles (damage estimates) several steps ahead maintaining the statistical properties of the evidence (measurements) and characteristics of the dynamical system model



- Process steps:
 - represent state as a pdf
 - sample the state pdf as a set of particles and associated weights
 - propagate particle values according to model
 - update weights based on measurement
 - Repeat all steps above to propagate to next time index

• A particle filter iteratively approximates the posterior *pdf* as a set:

$$S_{k} = \{ \left\langle x_{k}^{i}, w_{k}^{i} \right\rangle | i = 1, ..., n \}$$

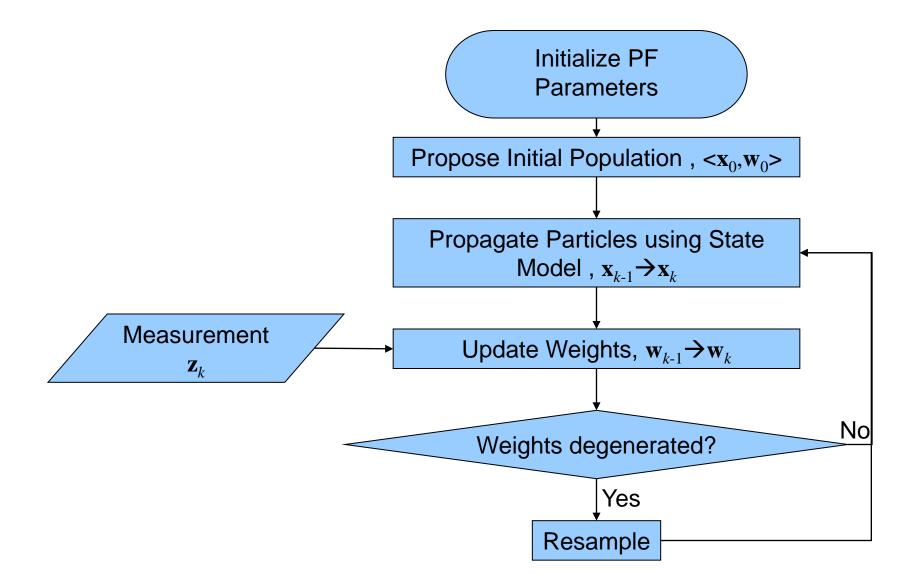
where: $p(x_{k} | z_{1:k}) \approx \sum_{i=1}^{n} w_{k}^{i} \delta(x_{k} - x_{k}^{i})$
 x_{k}^{i} is a point in the state space
 w_{k}^{i} is an importance weight associated with the point

• Prediction step: use the state update model

$$p(\mathbf{x}_{k} | \mathbf{z}_{1:k-1}) = \int p(\mathbf{x}_{k} | \mathbf{x}_{k-1}) p(\mathbf{x}_{k-1} | \mathbf{z}_{1:k-1}) d\mathbf{x}_{k-1}$$

• Update step: with measurement, update the prior using Bayes' rule:

$$p(\mathbf{x}_k \mid \mathbf{z}_{1:k}) = \frac{p(\mathbf{z}_k \mid \mathbf{x}_k) p(\mathbf{x}_k \mid \mathbf{z}_{1:k-1})}{p(\mathbf{z}_k \mid \mathbf{z}_{1:k-1})}$$



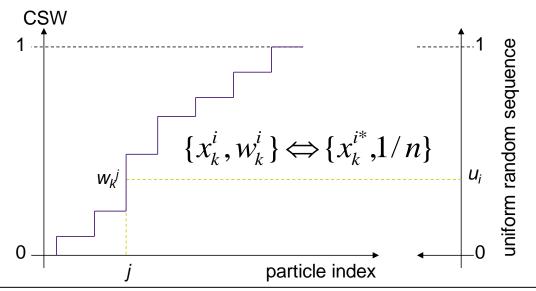
2009 Aviation Safety Program Technical Conference

- Particle weights degenerate over time
 - measure of degeneracy; effective sample size

$$\hat{n}_{eff} = 1 / \sum_{i=1}^{n} (w_k^i)^2$$
use normalized weights
$$1 \le \hat{n}_{eff} \le n$$

- resample whenever $\hat{n}_{e\!f\!f} < n_{thr}$

- new set of particles have same statistical properties



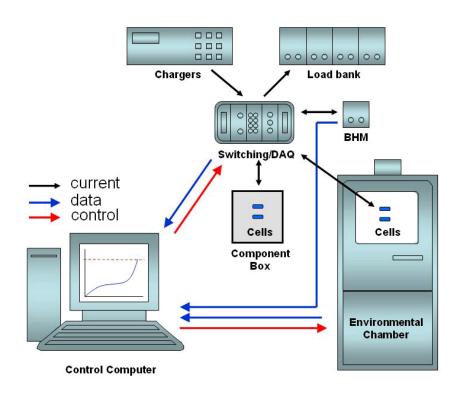
- Traditionally population growth models have been used for damage growth modeling
 - Arrhenius Model
 - Paris' Model
 - Coffin-Mason model
- Exponential based models

 $t_f = A \exp i \theta$ da $\frac{d\omega}{dN} = C\Delta K^m$ $N_f = A f^{-\alpha} \Delta T^{-\beta} G(T_{\text{max}})$

- Explain general trend of fault growth
- Fail to model several phenomena in different growth regimes
 - · Fault growth characteristics change with the age of the system
 - Permanent wear sets in as batteries age and hence discharge dynamics changes
 - Self healing characteristics
 - Batteries recuperate charge when allowed to rest
 - Crack closure phenomenon tends to reduce effective crack size momentarily
 - Maintenance operations increase engine efficiencies
- Physics based models can incorporate multiple physical phenomena that actually take place and affect fault growth / ageing
- These models can be semi empirical yet incorporate heuristics improving the accuracy and confidence in the predictions

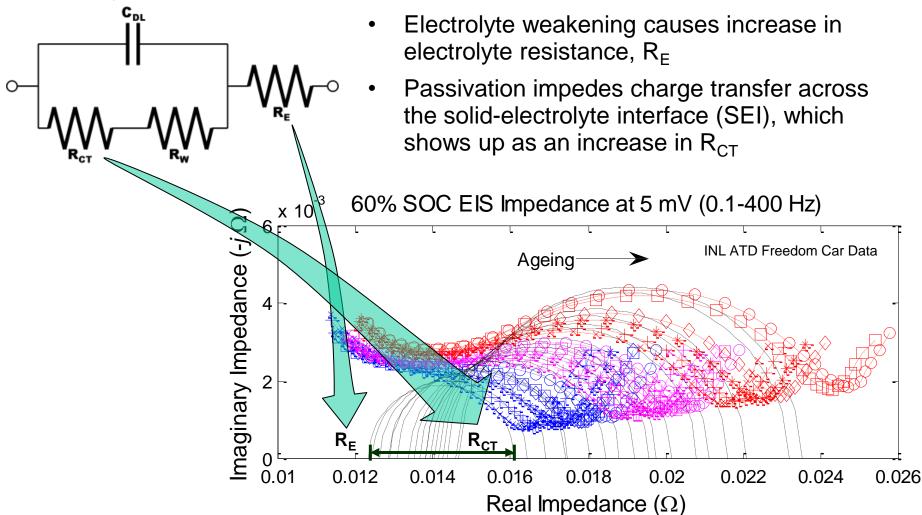
- Prognostics HIL test bed
 - To test prognostics algorithms with hardware in the loop
 - That mimics the complexities and issues encountered for a real system
- Such a system will support
 - Collection and dissemination of run-to-failure data
 - Development of metrics for prognostics
 - Algorithm development
 - Benchmarking of different approaches
 - Testing and validation of prognostic tools
- Requirements
 - Complexity high enough to showcase capabilities of more advanced algorithms
 - Can be failed in a safe manner
 - Aging process is repeatable
 - Small in size and cost effective
 - Aging dependency on environmental variables
 - Aging dynamics slow enough to be observable and fast enough for reasonable run-to-failure times

- Cells are cycled through charge and discharge under different load and environmental conditions set by the electronic load and environmental chamber respectively
- Periodically EIS measurements are taken to monitor the internal condition of the battery
- DAQ system collects externally observable parameters from the sensors
- Switching circuitry enables cells to be in the charge, discharge or EIS health monitoring state as dictated by the aging regime



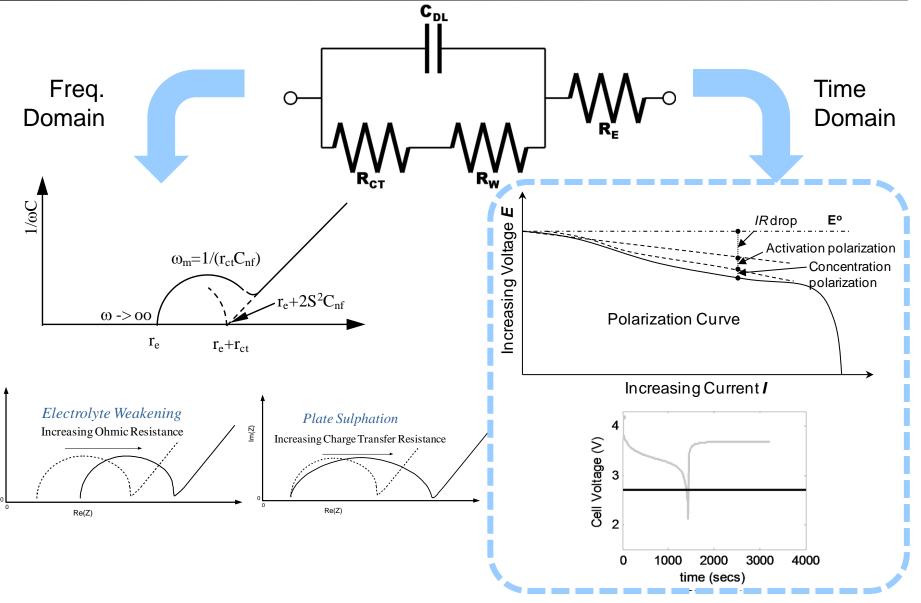
EIS: Electro-chemical Impedance Spectroscopy

Different aging effects have different signatures in the frequency domain analysis



²⁰⁰⁹ Aviation Safety Program Technical Conference

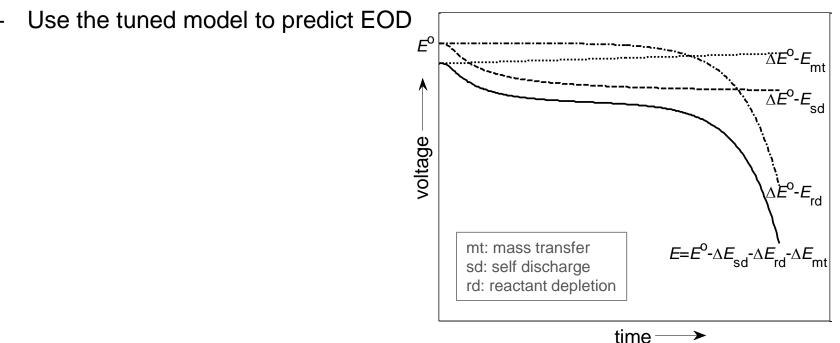
Approach: Modeling



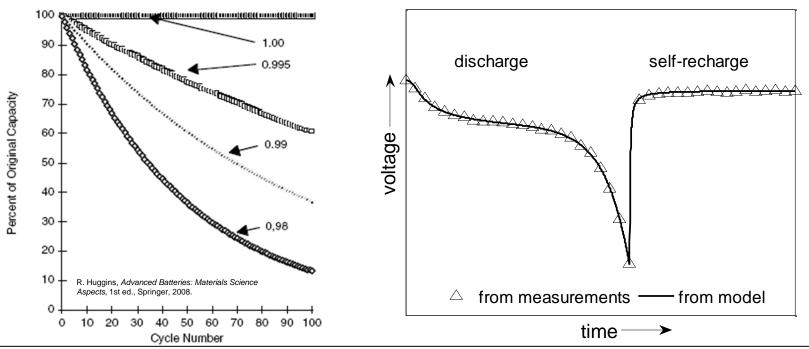
Im(Z)

2009 Aviation Safety Program Technical Conference

- Objective: Predict when Li-ion battery voltage will dip below 2.7V indicating end-of-discharge (EOD)
- Approach
 - Model non-linear electro-chemical phenomena that explain the discharge process
 - Learn model parameters from training data
 - Let the PF framework fine tune the model during the tracking phase

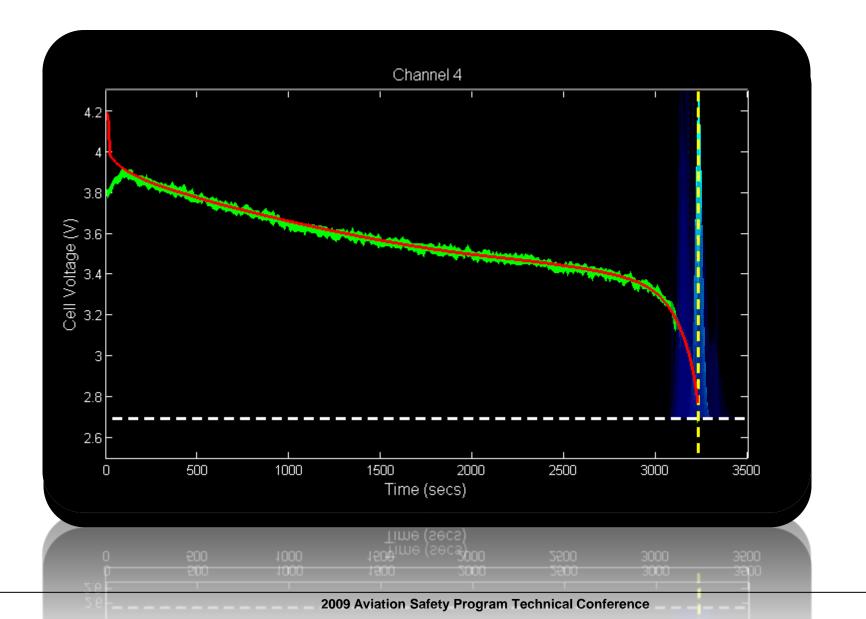


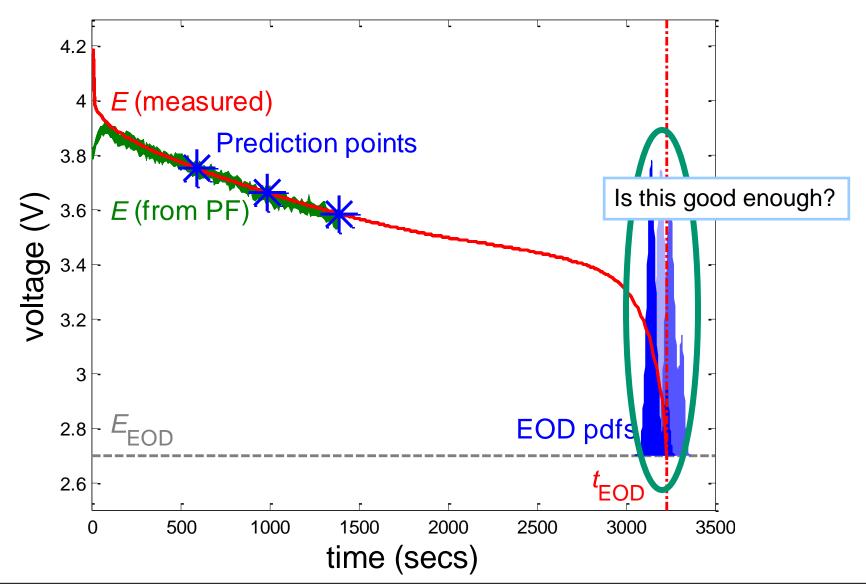
- Objective: Predict when Li-ion battery capacity will fade by 30% indicating life (End-of-Life)
- Approach
 - Model self-recharge and Coulombic efficiency that explain the aging process
 - Learn model parameters from training data
 - Let the PF framework fine tune the model during a few initial cycles
 - Use the tuned model to predict EOL



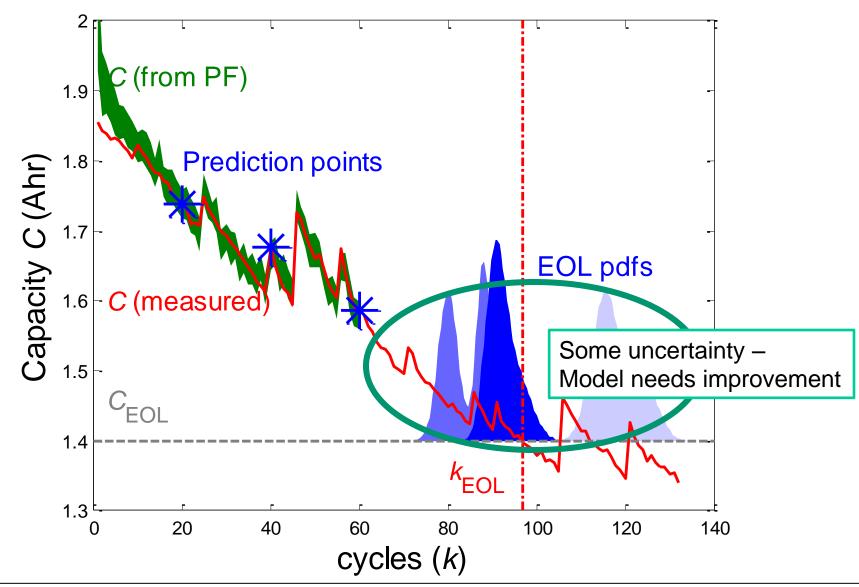
2009 Aviation Safety Program Technical Conference

Results: Prognostics in Action



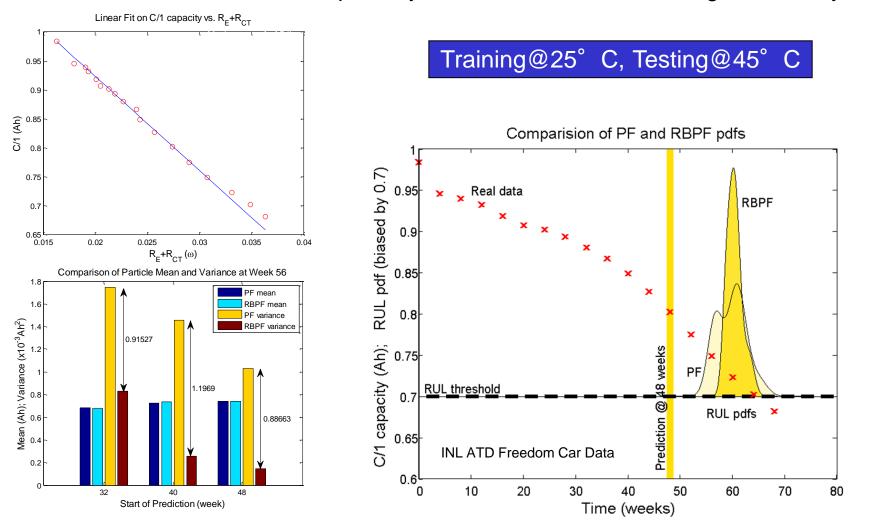


2009 Aviation Safety Program Technical Conference



²⁰⁰⁹ Aviation Safety Program Technical Conference

 Domain knowledge can used in a Rao-Blackwellized Particle Filter (RBPF) to make the state estimate partially deterministic, thus reducing uncertainty



2009 Aviation Safety Program Technical Conference

- Presented work on algorithm development and model building for prognostics
 - Empirical model to describe battery behavior during individual discharge cycles as well as over its cycle life
 - Model has been tested using experimental data
 - Model has been used in a PF framework to make predictions of EOD and EOL effectively
 - Algorithms have been tested on other models
- Model can be applied to other battery types as long as effects specific to those chemistries are modeled as well (e.g. the memory effect in Ni-Cd rechargeable batteries)
- The PF prognosis framework allows explicit representation and management of uncertainty with mathematical guarantees of convergence
- HIL testbed built that allows assessment of different prognostic algorithms
 - Data sets available at https://dashlink.arc.nasa.gov/data/li-ion-battery-aging-datasets

- Assess impact of model fidelity improvement
 - Explicitly incorporate influence of factors like
 - Temperature
 - Load
 - Magnitude of Cycles
 - State of Charge (SOC) after charging
- Advanced filtering techniques (after the factors above are understood)
 - unscented PF
 - Rao-Blackwellized PF
- Explicitly assess impact of future load variations