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Problem Statement

• Prognostics

– Investigate algorithms that allow prediction of the time at which a component will 
no longer perform a particular function

– Lack of performance is most often component failure

• The predicted time becomes then the “remaining useful life” (RUL)

• State-of-practice and state-of-art

– Data-driven techniques for prognostics based on machine learning

• Statistical extrapolation

– Polynomial regression

• Probabilistic techniques

– Gaussian process regression

– Relevance vector machine

• Neural networks

– Model-based approaches slowly getting more traction

• Improved understanding of the systems

• Enhanced computational capabilities

• Challenges

– Absence of sufficiently large data sets

– Uncertainty management

– Performance assessment
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IVHM milestone

• The work is performed under task 1.2.3.2 “Develop and evaluate 
data-driven, physics-based and hybrid prognostic models and 
methodologies.“

– Data-driven techniques investigated

• Gaussian Process Regression

• Relevance Vector Regression

• Neural Networks

• “Standard” regression techniques

– Model-based techniques

• Variations of Kalman Filters

– Extended Kalman Filters

– Unscented Kalman Filters

• Variations of Particle Filters

– Rao-Blackwellized Particle Filter

– Fixed Lag Particle Filter
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Background:
Data-Driven Modeling

• Use run-to-failure data sets representing a range of operating 
conditions and fault modes

• Develop damage propagation model 

– by using suitable features and 

– learning characteristics such that one can 

• determine remaining life in a partial data set 

• Advantage

– No need to have a deeper understanding of the underlying physics of 
the process

• Limitations

– Sufficient amounts of data for learning are hard to come by

• Particularly for new systems

• Or “fleets of size one”

– Low confidence predictions

• Rigorous integrated methods for uncertainty management not available

– Methods often break under unexpected (unseen) situations

• Changes in environmental and operational conditions

• Material or process variations

• Maintenance operations, self healing phenomena, etc.

– Difficulty comparing results from different approaches

• Lack of metrics

Perform regression to map features 

to damage

Estimated current damage

Estimated future damage

Estimated Remaining life

n-D features

Perform extrapolation to damage 

limit

Take difference between threshold 

crossing and now
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Background
Physics-Based Modeling

• Physics-based model of system

– Describe the dynamics of the system under nominal operation using first 
principles (or other physics-based techniques)

• Physics-based damage propagation model

• Prediction algorithm

Fault Detection 

Isolation & 

Identification

Damage 

Estimation
Prediction

uk yk F p(EOLk-L|y0:k)
System

yk

p(xk-L|y0:k)

p(RULk-L|y0:k)

System receives 

inputs, produces 

outputs

Identify active 

damage 

mechanisms

Estimate current 

state and parameter 

values

Predict EOL and 

RUL as probability 

distributions
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Approach: Particle Filtering

• Particle Filter offer a Bayesian framework that allows estimation 

of current state of damage and then propagate the damage into 

future without simplistic assumptions of Normality and model 

linearity in a rigorous statistical manner.

• Salient features of Particle Filters
• Model adaptation

• State estimation, tracking and prediction

• Nice tradeoff between MC and KF

• Useful in both diagnostics and prognostics

• Represent uncertainty

• Manage uncertainty
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measured state value

state particle value

state pdf (belief)

actual state trajectory

estimated state trajectory

particle propagation

particle weight

• Process steps:

– represent state as a pdf

– sample the state pdf as a 
set of particles and 
associated weights

– propagate particle values 
according to model

– update weights based on 
measurement

– Repeat all steps above to 
propagate to next time 
index

Approach: Particle Filtering

• Propagates particles (damage estimates) several steps ahead maintaining 
the statistical properties of the evidence (measurements) and 
characteristics of the dynamical system model
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 A particle filter iteratively approximates the posterior pdf as a 

set:

where: 

xk
i is a point in the state space

wk
i is an importance weight associated with the point
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Approach: Particle Filtering
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 Prediction step: use the state update model

 Update step: with measurement, update the prior using 

Bayes’ rule:
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Initialize PF 

Parameters

Propose Initial Population , <x0,w0>

Propagate Particles using State 

Model , xk-1xk

Update Weights, wk-1wk

Measurement

zk

Weights degenerated?

Resample

Yes

No

Approach: Particle Filtering
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• Particle weights degenerate over time

– measure of degeneracy: effective sample size

– resample whenever

– new set of particles have same statistical properties
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Damage Growth Modeling

• Traditionally population growth models have been used for damage growth 
modeling

– Arrhenius Model

– Paris’ Model

– Coffin-Mason model

• Exponential based models

– Explain general trend of fault growth

– Fail to model several phenomena in different growth regimes

• Fault growth characteristics change with the age of the system

– Permanent wear sets in as batteries age and hence discharge dynamics changes

• Self healing characteristics

– Batteries recuperate charge when allowed to rest

– Crack closure phenomenon tends to reduce effective crack size momentarily

– Maintenance operations increase engine efficiencies

• Physics based models can incorporate multiple physical phenomena that 
actually take place and affect fault growth / ageing

• These models can be semi - empirical yet incorporate heuristics improving 
the accuracy and confidence in the predictions
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Hardware-in-the-Loop Test Bed

• Prognostics HIL test bed

– To test prognostics algorithms with hardware in the loop

– That mimics the complexities and issues encountered for a real system

• Such a system will support

– Collection and dissemination of run-to-failure data

– Development of metrics for prognostics

– Algorithm development

– Benchmarking of different approaches

– Testing and validation of prognostic tools

• Requirements

– Complexity high enough to showcase capabilities of more advanced algorithms

– Can be failed in a safe manner

– Aging process is repeatable

– Small in size and cost effective

– Aging dependency on environmental variables

– Aging dynamics slow enough to be observable and fast enough for reasonable 

run-to-failure times
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Hardware-in-the-Loop Testbed

• Cells are cycled through charge 

and discharge under different load 

and environmental conditions set 

by the electronic load and 

environmental chamber 

respectively 

• Periodically EIS measurements 

are taken to monitor the internal 

condition of the battery

• DAQ system collects externally 

observable parameters from the 

sensors

• Switching circuitry enables cells to 

be in the charge, discharge or EIS 

health monitoring state as dictated 

by the aging regime

BHM

EIS: Electro-chemical Impedance Spectroscopy
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• Different aging effects have different signatures in the frequency domain 
analysis

• Electrolyte weakening causes increase in 
electrolyte resistance, RE

• Passivation impedes charge transfer across 
the solid-electrolyte interface (SEI), which 
shows up as an increase in RCT
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• Objective: Predict when Li-ion battery voltage will dip below 2.7V 
indicating end-of-discharge (EOD)

• Approach

– Model non-linear electro-chemical phenomena that explain the 
discharge process

– Learn model parameters from training data 

– Let the PF framework fine tune the model during the tracking phase

– Use the tuned model to predict EOD
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• Objective: Predict when Li-ion battery capacity will fade by 30% 
indicating life (End-of-Life)

• Approach
– Model self-recharge and Coulombic efficiency that explain the aging 

process
– Learn model parameters from training data 
– Let the PF framework fine tune the model during a few initial cycles
– Use the tuned model to predict EOL
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R. Huggins, Advanced Batteries: Materials Science 

Aspects, 1st ed., Springer, 2008.

Approach: Modeling State of Life (SOL)
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Results: Prognostics in Action
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Results: SOC Prediction
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Results: SOL Prediction
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• Domain knowledge can used in a Rao-Blackwellized Particle Filter (RBPF) 
to make the state estimate partially deterministic, thus reducing uncertainty
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Summary and Conclusions

• Presented work on algorithm development and model building for 
prognostics

– Empirical model to describe battery behavior during individual discharge 
cycles as well as over its cycle life

– Model has been tested using experimental data 

– Model has been used in a PF framework to make predictions of EOD and 
EOL effectively

– Algorithms have been tested on other models

• Model can be applied to other battery types as long as effects specific 
to those chemistries are modeled as well (e.g. the memory effect in Ni-
Cd rechargeable batteries)

• The PF prognosis framework allows explicit representation and 
management of uncertainty with mathematical guarantees of 
convergence

• HIL testbed built that allows assessment of different prognostic 
algorithms

– Data sets available at https://dashlink.arc.nasa.gov/data/li-ion-battery-aging-datasets
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Next Steps

• Assess impact of model fidelity improvement

– Explicitly incorporate influence of factors like 

• Temperature

• Load

• Magnitude of Cycles

• State of Charge (SOC) after charging

• Advanced filtering techniques (after the factors above are 
understood)

– unscented PF

– Rao-Blackwellized PF

• Explicitly assess impact of future load variations
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