

## Data Mining for Aviation Safety: Algorithms and Future Development

Ashok N. Srivastava, Ph.D. Principal Investigator, IVHM Project Group Lead, Intelligent Data Understanding ashok.n.srivastava@nasa.gov



#### Summary of Research Needs in Aviation Safety

- Aircraft aging and durability
  - Full fundamental knowledge about legacy aircraft
  - Start on knowledge about likely emerging materials and structures
- On-board system failures and faults airframe, propulsion, aircraft systems (physical and software)
  - Early prediction, detection and diagnosis
  - Prognosis
  - Mitigation
- Monitoring for problems before they become accidents
  - Vehicle issues
  - Airspace issues
- Loss-of-control
  - Understanding aircraft dynamics of current and future vehicles in damaged and upset conditions
  - Control systems robust to the unanticipated and anticipated
  - Aircraft guidance for emergency operation
- Flight in hazardous conditions
  - Modeling and sensing airframe and engine icing and icing conditions
  - Sensing and portraying environmental hazards
- New operations
  - Design of robust collaborative work environments
  - Design of effective, robust human-automation systems
  - Information management and portrayal for effective decision making



Integrated Vehicle Health Management

#### Integrated Vehicle Health Management: An Aviation Safety Project



#### Level 4 – Aircraft Level



#### The Data Mining Team



#### **Group Members**

Kanishka Bhaduri, Ph.D. Santanu Das, Ph.D. Elizabeth Foughty Dave Iverson Rodney Martin, Ph.D. Bryan Matthews Nikunj Oza, Ph.D. Mark Schwabacher, Ph.D. John Stutz David Wolpert, Ph.D.

#### **Funding Sources**

- NASA Aeronautical Research Mission
  Directorate- IVHM Project
- NASA Engineering and Safety Center
- Exploration Systems Mission Directorate
  Exploration Technology Development
  Program, ISHM Project
- Science Mission Directorate

Team Members are NASA Employees, Contractors, and Students.



### Intelligent Data Understanding Group

- The IDU group develops novel algorithms to detect, classify, and predict events in large data streams for scientific and engineering systems.
- Emphasis is on
  - Discovery algorithms: uncovering the unexpected
  - Scalability
  - Fleet-wide or system-wide issues in aeronautics



#### The Forensic (Historic) Approach to Accident Prevention



**VS**....

#### ... a More Prognostic Approach



# Leads to **Decisions**

*before* an Accident or Incident Occurs



### **Discovery of Anomalies**



- In early January 2007, International Space Station Early External Thermal Control System developed an ammonia gas bubble
- Bubble noted by ISS controllers only ~9 hours before it "burst" and dissipated back into liquid



### **Scalability and Accuracy**



### Key areas of research in data mining



#### **Research Topic Areas**

- Anomaly Detection
- Prediction Systems
- Text Mining
- Mining Distributed Data Systems and Sensor Networks
- High Performance Time Series
  Search

#### **Application Areas**

- Safety critical systems
- Large scale distributed systems
- Earth Sciences
- Space Sciences
- Systems Health Data from Aeronautical and Space Systems



#### **Program Background**







![](_page_11_Picture_0.jpeg)

## Algorithms for Distributed Data Mining (DDM) in Large Asynchronous Networks

Kanishka Bhaduri, Ph.D.

Mission Critical Technology Inc.

NASA Ames Research Center

•Joint work with: R. Wolff, C. Giannella, H. Kargupta, A. N. Srivastava

![](_page_12_Picture_0.jpeg)

#### Data Mining and Distributed Data Mining

- Data Mining:
  - Discovery of actionable information from large databases with emphasis on:
    - Scalability
    - Communication
    - storage
- Distributed data mining (DDM)
  - Mining data when data and computing resources are distributed

![](_page_13_Picture_0.jpeg)

#### Possible Aviation Related Distributed Systems

![](_page_13_Figure_2.jpeg)

![](_page_14_Picture_0.jpeg)

## **Typical Problem Statement**

- Consider large network of nodes
  - Each node has local data which change over time Each node exchanges messages
- Develop data mining algorithms for mining global data
- Constraints:
  - low communication overhead
  - no synchronization
  - failure resistance
  - result *provably* correct with respect to centralized techniques •15

![](_page_15_Picture_0.jpeg)

### **Provable Correctness**

- If a distributed data mining algorithm is 'provably correct' that means that the algorithm will give you the same answer if the data is centralized or distributed.
- Most attempts at distributed data mining do not obey this principle.
- This verification and validation is **critical** for safety applications.

The way you happen to store data should not change the results of a safety study.

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

Limited publication and distribution rights

- Suppose the output of each data mining algorithm gives the top anomalies in each database.
- The consensus of the output of the algorithms could indicate "no significant anomalies present" in the databases.
- If we centralize the data and then analyze it, the algorithm must still say "**no significant anomalies present.**"
- For non-provably correct algorithms, there may be a disagreement.

![](_page_17_Picture_0.jpeg)

### Distributed National Archives (circa 2007)

000

B\_257733\_FN.eps @ 50% (CMYK/Preview)

![](_page_17_Figure_4.jpeg)

![](_page_18_Picture_0.jpeg)

### Preliminary Results of Flow Control Valve Data Mining Activity Supporting the Flight Readiness Review for STS-119

![](_page_18_Picture_2.jpeg)

Ashok N. Srivastava Ph.D. Principal Investigator, ARMD-IVHM Data Mining Group Lead Dave Iverson, ARC Bryan Matthews, SGT February 17, 2009

![](_page_19_Picture_0.jpeg)

### Overview

- Ashok received a request to support the Flight Readiness Review for STS-119 which was scheduled for 2/20/09 as the Data Mining Subject Matter Expert.
- Data mining algorithms developed at NASA were applied to these data to determine whether any anomalies can be detected in STS-126 and its predecessor flight STS-123 for Space Shuttle Endeavor.

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_20_Picture_0.jpeg)

### **Algorithms and Data**

- IMS (Inductive Monitoring System): a data point is anomalous if it is far away from clusters of nominal points.
- Orca: a data point is anomalous if it is far away from its nearest neighbors.
- Virtual Sensor: a data point is anomalous if the actual value is far away from the predicted value.
- Data: 13 pressure, temperature, and control variables related to the Flow Control Valve subsystem.

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

## IMS Anomaly Score

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

## **IMS Anomaly Score**

![](_page_23_Picture_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

#### Virtual Sensor: STS-118 and STS-126

![](_page_24_Figure_2.jpeg)

![](_page_25_Picture_0.jpeg)

#### Virtual Sensor: STS-123 and STS-126

![](_page_25_Figure_2.jpeg)

### Virtual Sensors with Adaptive Thresholds

![](_page_26_Figure_1.jpeg)

A. N. Srivastava, B. Matthews, D. Iverson, B. Beil, and B. Lane, "Multidimensional Anomaly Detection on the Space Shuttle Main Propulsion System: A Case Study," submitted to IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2009.

![](_page_27_Picture_0.jpeg)

# SequenceMiner Identifying Anomalous Flights

# from Discrete Data

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

- Develop an approach to model the behavior of discrete sensors in an aircraft during flight.
- Focus is on primary sensors that record pilot actions.
- The aim is to discover atypical behavior that has possible operational significance.

### Solution

![](_page_29_Picture_1.jpeg)

#### We developed sequenceMiner,

Each flight is analyzed as a sequence of events, taking into account the order in which switches change values as well as the frequency of occurrence of switches.

Two Tasks:

Given a group of flights, find flights that are anomalous compared to the rest of the flights in the group.

Given a flight known to be anomalous, describe the anomalies in the flight and the degree to which they are anomalous.

### **Incorporating Operational Information**

![](_page_30_Picture_1.jpeg)

#### Switch Weight:

#### A weight is attached to each switch.

A measure of its importance to flight based on a discussion with SMEs. In the measure of similarity, the weights of the switches as well as the number of switches out of sequence are considered.

#### Ignore deviations with a small time gap:

- Suppose the algorithm finds that a switch was not pressed when it was expected.
  - It searches to see if the switch was pressed within one minute of the expected time.
  - If the switch was pressed within a minute of the time point, it ignores the alarm.

![](_page_31_Figure_0.jpeg)

Captain Cirino's comments: "Landing gear goes up and down more than once. Go-around. Unable to determine pilot or ATC-related. Low descent after bringing landing gear up. Needs to be investigated (with flap information applied)."

### Flight 1147 Flight Path

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

Latitude Displacement (degrees)

Longitude Displacement (degrees)

![](_page_33_Picture_0.jpeg)

### **Change-in-Runway Study**

There is evidence that a change in landing runway during approach is a causal factor in computer errors.

Can sequenceMiner find evidence of mode confusion?

#### Flight Management System (FMS) Switch Activations on Approach with a CIR Event

|     |                        |              | seco         | nds to touch | down                 |                        |                      |                       |
|-----|------------------------|--------------|--------------|--------------|----------------------|------------------------|----------------------|-----------------------|
|     | 639                    | 639          | 457          | 457          | 457                  | 305                    | 305                  | 266                   |
| on  |                        |              |              |              |                      |                        |                      |                       |
|     |                        |              |              |              |                      |                        |                      |                       |
| off |                        | •            | -            | •            | •                    | -                      |                      |                       |
|     | AP_Heading_Select_Mode | AP_LNAV_Mode | AP_Engaged_L | AP_Engaged_R | Autothrottle_Engaged | AP_Heading_Select_Mode | AP_Localizer_Engaged | AP_Glide_Slope_Engage |

SME opinion: No evidence of mode confusion.

#### Switch Activations during a Change to a Parallel Runway

![](_page_35_Picture_1.jpeg)

(NOTE: Approximately same time interval as previous slide)

|     |                        |                                                               |                      |                      |              |              |                        |              |              | :                    | seconds to touchdown |              |                       |              |              |                       |                      |                      |                      |              |              |                      |                      |                       |                      |                  |
|-----|------------------------|---------------------------------------------------------------|----------------------|----------------------|--------------|--------------|------------------------|--------------|--------------|----------------------|----------------------|--------------|-----------------------|--------------|--------------|-----------------------|----------------------|----------------------|----------------------|--------------|--------------|----------------------|----------------------|-----------------------|----------------------|------------------|
|     | 600                    | 600                                                           | 365                  | 365                  | 364          | 364          | 364                    | 359          | 359          | 359                  | 358                  | 358          | 351                   | 309          | 309          | 309                   | 309                  | 309                  | 309                  | 308          | 308          | 308                  | 302                  | 288                   | 275                  | 258              |
| on  |                        |                                                               |                      |                      |              |              |                        |              |              |                      |                      |              |                       |              |              |                       |                      |                      |                      |              |              |                      |                      |                       |                      |                  |
|     |                        |                                                               |                      |                      |              |              |                        |              |              |                      | >                    | •            |                       | >            | >            | >                     | >                    | >                    | >                    | >            | >            | >                    | >                    | >                     | >                    | >                |
| off |                        |                                                               |                      |                      |              |              |                        |              |              |                      |                      |              |                       |              |              |                       |                      |                      |                      | ▼            |              |                      |                      |                       |                      |                  |
|     | AP_Heading_Select_Mode | AP_LNAV_Mode                                                  | AP_Localizer_Engaged | Autothrottle_Engaged | AP_Engaged_L | AP_Engaged_R | AP_Heading_Select_Mode | AP_Engaged_L | AP_Engaged_R | Flight_Director_On_R | AP_Engaged_L         | AP_Engaged_R | AP_Glide_Slope_Engage | AP_Engaged_L | AP_Engaged_R | AP_Glide_Slope_Engage | AP_Localizer_Engaged | Flight_Director_On_L | Flight_Director_On_R | AP_Engaged_L | AP_Engaged_R | Flight_Director_On_L | AP_Localizer_Engaged | AP_Glide_Slope_Engage | Flight_Director_On_R | AP_Approach_Mode |
|     | <b>~</b>               | = out of sequence switch activation detected by sequenceMiner |                      |                      |              |              |                        |              |              |                      |                      |              |                       | _            |              |                       |                      |                      |                      |              |              |                      |                      |                       |                      |                  |

SME opinion: Possible evidence of mode confusion.

#### Switch Activations during a Change to a Crossing Runway

|     |                        |              |                      |              |              |              |              | sec                    | conds                | to to        | uchdo        | wn                     |                      |                      |              |              |                        |                      |
|-----|------------------------|--------------|----------------------|--------------|--------------|--------------|--------------|------------------------|----------------------|--------------|--------------|------------------------|----------------------|----------------------|--------------|--------------|------------------------|----------------------|
|     | 376                    | 376          | 245                  | 244          | 244          | 172          | 172          | 172                    | 172                  | 171          | 171          | 171                    | 171                  | 169                  | 167          | 167          | 167                    | 167                  |
| on  |                        |              |                      |              |              |              |              |                        |                      |              |              |                        |                      |                      |              |              |                        |                      |
|     |                        |              | >                    |              |              | >            | >            |                        |                      | >            | <b>v</b>     | <b>~</b>               | >                    | >                    | <b>~</b>     | >            | <b>~</b>               | <b>~</b>             |
| off |                        | ▼            | ▼                    | ▼            | ▼            |              |              | ▼                      | ▼                    | ▼            | ▼            |                        |                      | ▼                    |              |              | ▼                      | ▼                    |
|     | AP_Heading_Select_Mode | AP_LNAV_Mode | Autothrottle_Engaged | AP_Engaged_L | AP_Engaged_R | AP_Engaged_L | AP_Engaged_R | AP_Heading_Select_Mode | Flight_Director_On_R | AP_Engaged_L | AP_Engaged_R | AP_Heading_Select_Mode | Flight_Director_On_R | Flight_Director_On_R | AP_Engaged_L | AP_Engaged_R | AP_Heading_Select_Mode | Flight_Director_On_L |

SME opinion: Possible evidence of mode confusion.

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

- A flight's anomalous behavior can be characterized by it's missing and extra switches, which sequenceMiner is able to describe.
- We applied sequenceMiner to the CIR study and identified instances of mode confusion occurring during a CIR.
- An article describing the sequenceMiner algorithms in detail, along with associated experimental results has been accepted for publication.
- We have started the process to release sequenceMiner as Open Source software.

![](_page_38_Picture_0.jpeg)

### Some Partners of the IVHM Project

![](_page_38_Picture_2.jpeg)

![](_page_39_Picture_0.jpeg)

Primary References:

- A. N. Srivastava, "Learning Kernels with Mixture Densities," in preparation for IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005.
- A. N. Srivastava, "Mixture Density Mercer Kernels: A Method to Learn Kernels Directly from Data, Proceedings of the 2004 SIAM Data Mining Conference, Orlando FL.
- A. N. Srivastava and N. Oza, "Knowledge Driven Image Mining with Mixture Density Mercer Kernels," European Space Agency Special Publication #553, Proceedings of the European Image Information Mining Coordination Group, Madrid, Spain 2004.
- A. N. Srivastava and B. Zane-Ulman, "Discovering Hidden Anomalies in Text Reports Regarding Complex Space Systems", IEEE Aerospace Conference, Big Sky, MT, 2005.
- A. N. Srivastava, "Discovering Anomalies in Sequences with Applications to System Health," Proceedings of the 2005 Joint Army Navy NASA Air Force Interagency Conference on Propulsion, Charleston SC, 2005.
- A. N. Srivastava, R. Akella, et. al., "Enabling the Discovery of Recurring Anomalies in Aerospace System Problem Reports using High-Dimensional Clustering Techniques," accepted for publication in the 2006 Proceedings of the IEEE Aerospace Conference.
- M. J. Way and A. N. Srivastava, "Novel Methods for Predicting Photometric Redshifts from Broadband Photometry using Virtual Sensors." Astrophysical Journal, 647:102-115, 2006.
- S. Budalakoti, A. N. Srivastava, R. Akella, "Discovering Atypical Flights in Sequences of Discrete Flight Parameters," accepted for publication in the 2006 Proceedings of the IEEE Aerospace Conference.
- M. Schwabacher, "Machine Learning for Rocket Propulsion Health Monitoring, "SEA World Aerospace Congress, 2005.
- S.D. Bay and M. Schwabacher, "Mining Distance-Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rulem," KDD-2003.
- D. Iverson, "Inductive System Health Monitoring," Published in the Proceedings of The 2004 International Conference on Artificial Intelligence (IC-AI'04), CSREA Press, Las Vegas, NV, June 2004.

![](_page_40_Picture_0.jpeg)

- B. Amidan, and T. Ferryman, "Atypical Event and Typical Pattern Detection within Complex Systems," IEEE Aerospace Conference, 2005.
- L. Atlas and G. Bloor, An evolvable tri-reasoner ivhm system, ISIS Vanderbilt Website (1999).
- A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra, *Generative model-based clustering of directional data*, 2003.
- T. Cormen, C. Leiserson, R. Rivest and C. Stein, "Introduction to algorithms", The MIT Press; 2<sup>nd</sup> edition.
- I.T. Joliffe, *Principle component analysis*, Springer, 2002.
- Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani, An online algorithm for segmenting time series, ICDM, 2001, pp. 289-296.
- T. Lane, "Machine Learning Techniques for the computer security domain of anomaly detection", Ph.D. Thesis, CERIAS TR 2000-12, Purdue University, August 2000.
- M. Last, Y. Klein, and A. Kandel, Knowledge discovery in time series databases, 2001.
- R.T. Ng. and Jiawei Han, "CLARANS: a method for clustering objects for spatial data mining", IEEE Transactions on Knowledge and Data Engineering, Volume 14, Issue 5 (Sept/Oct 2002), Pages: 1003-1016.
- L. R. Rabiner, A Tutorial on hidden markov models and selected applications in speech recognition, Proceedings of the IEEE 77 (1989), no. 2, 257-286.
- K. R. Pattipati J. Ying, T. Kirubarajan and A. Patterson-Hine, *A hidden markov model-based algorithm for online fault diagnostic with partial and imperfect tests,* IEEE Transactions on SMC: Part C 30 (2000), no. 4, 463-473.
- D.B. Skillicorn, *Clusters within clusters: Svd and counterterrorism,* SIAM Workshop on Counterterrorism (2003).

![](_page_41_Picture_0.jpeg)

- L. Connel, "Incident Reporting: The nasa aviation safety reporting system", GSE Today, pp. 66-68, 1999.
- T.K. Landauer, D. Laham, and P. Foltz, "Learning human-like knowledge by singular value decomposition: A progress report," in *Advances in Neural Information Processing Systems*, M. I. Jordan, M. J. Kearnes, and S. A. Solla, Eds., vol. 10. The MIT Press, 1998. [online]. Available: cite-seer.ist.ppsu.edu/landauer/98learning.html.
- T. Joachims, "A Probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization," in *Proceedings of ICML-97, 14<sup>th</sup> International Conference on Machine Learning,* D. H. Fisher Ed. Nashville, US: Morgan Kaufman Publishers, San Francisco, US, 1997, pp. 143-151.
- I.T. Jolliffe, Principle Components Analysis. New York: Springer Verlag, 1986.
- M.I. Jordan and R.A. Jacobs, "Hierarchical mixtures of experts and the EM algorithm, Tech. Rep. AIM-1440, 1993. [online]. Available: citeseer.ist.psu.edu/article/jordan94hierarchical.html.
- J.W. Sammon, "A nonlinear mapping for data structure analysis," *IEEE Transactions on Computers,* Vol. C-18, pp. 401-409, 1969.
- A. Ng. M. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," 2001. [Online]. Available: citeseer.ist.psu.edu/ng01spectral.html.
- C. Linde and R. Wales, "Work process issues in nasa's problem reporting and corrective action (praca) database," NASA Ames Research Center, Human Factors Division, Tech. Rep., 2001. [Online]. Available: humanfactors.arc.nasa.gov/april01-workshop/2pg.linde3.doc.

# NatsA

### References

#### References for slides on IMS

- D. Dvorak and B. Kuipers. "Model-Based Monitoring of Dynamic Systems", Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), Morgan Kaufman, Los Altos, CA., 1989.
- R. Reiter. "A Theory of Diagnosis from First Principles", Artificial Intelligence, 32(1):57-96, Elsevier Science, 1987.
- P.S. Bradley, O.L. Mangasarian, and W.N. Street. "Clustering via Concave Minimization", Advances in Neural Information Processing Systems 9, M.C. Mozer, M.I. Jordon, and T. Petsche(Eds.), pp 368-374, MIT Press, 1997.
- P.S. Bradley and U. M. Fayyad. "Refining initial points for K-means clustering", in *Proceedings of the International Conference on Machine Learning* (ICML-98), pp 91--99, July 1998.
- M. Ester, H-P Kreigel, J. Sander, and X. Xu. "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise", *Proceedings* of the 2nd ACM SIGKDD, pp 226-231, Portland, OR, 1996.
- W.C. Hamscher. "ACP: Reason maintenance and inference control for constraint propagation over intervals", *Proceedings of the 9th National Conference on Artificial Intelligence*, pp 506-511, Anaheim, CA, July, 1991.
- J.M Kleinberg. "Two Algorithms for Nearest-Neighbor Search in High Dimensions", Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pp 599-608, El Paso, TX, May, 1997.

H.W. Gehman, et al., "Columbia Accident Investigation Board Report", U.S. Government Printing Office, Washington, D.C., August 2003.

![](_page_43_Picture_1.jpeg)

#### References for slides on sequenceMiner

- L. Kaufman and P.J. Rousseeuw, *Finding Groups in Data: An Introduction to Cluster Analysis*, John Wiley and Sons, Inc., New York (1990).
- T. Cormen, C. Leiserson, R. Rivest and C. Stein, *Introduction to algorithms*, The MIT Press; 2nd edition.
- James W. Hunt and Thomas G. Szymanski, *A Fast Algorithm for computing Longest Common Subsequences*. Communications of the ACM, Volume 20, Issue 5 (May 1977),Pages: 350 353.
- D. S. Hirschberg, *Algorithms for the Longest Common Subsequence Problem*, Journal of the ACM, Volume 24, Issue 4 (October 1977), Pages: 664 675.
- D. S. Hirschberg, *A Linear Space Algorithm for computing Maximal Common Subsequences*, Communications of the ACM, Volume 18, Issue 6 (June 1975), Pages: 341 343.
- L. Bergroth, H. Hakonen and T. Raita, *A Survey of Longest Common Subsequence Algorithms*, Proceedings of the Seventh International Symposium on String Processing Information Retrieval(SPIRE), 2000.
- K. Sequeira and M. Zaki, *ADMIT: Anomaly based Data Mining for Intrusions*, Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(SIGKDD), 2002.
- Scott Coull, Joel Branch and Boleslaw Szymanski, *Intrusion Detection: A Bioinformatics Approach*, Proceedings of the 19th Annual Computer Security Applications Conference(ACSAC), 2003.
- A. Banerjee and J. Ghosh, *Clickstream Clustering using Weighted Longest Common Subsequence*, Proceedings of the 1st SIAM International Conference on Data Mining (SDM): Workshop on WebMining, 2001
- T. Lane and C. Brodley, *Temporal sequence learning and data reduction for anomaly detection*, ACM Transactions on Information and System Security (TISSEC), Volume 2, Issue 3 (August 1999), Pages: 295 331.
- A. N. Srivastava, *Discovering System Health Anomalies using Data Mining Techniques*, Proceedings of the 2005 Joint Army Navy NASA Airforce Conference on Propulsion, 2005.

# Nasa

### References

#### References for slides on Orca

- C.C. Aggarwal and P.S. Yu. Outlier detection for high dimensional data. In *Proceedings of the ACM SIGMOD International Conference on Management of Data,* 2001
- F. Angiulli and C. Pizzuti. Past outlier detection in high dimensional spaces. In *Proceedings of the Sixth European Conference on the Principle of Data Mining and Knowledge Discovery,* pages 15-26, 2002
- V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons, 1994
- J.L. Bentley. Multidimensional binary search trees used for associative searching. *Communications of the ACM*, 18(9): 509-517, 1975
- S. Berchtold, D. Keim, and H.-P. Kreigel. The X-tree: an index structure for high-dimensional data. In *Proceedings of the* 22nd International Conference on Very Large Databases, pages 28-39, 1996
- G. Bisson, Learning in FOL with a similarity measure. In *Proceedings of the Tenth National Conference on Artificial Intelligence,* pages 82-87, 1992.
- R.J. Bolton and D.J. Hand. Statistical fraud detection: A review (with discussion). Statistical Science, 17(3): 235-255,2002
- M.M. Breunig, H. Kriegel, R.T. Ng. and j. Sander. LOF: Identifying density-based local outliers. In *Proceedings of the ACM* SIGMOD International Conference on Management of Data, 2000
- W. Emde and D. Wettschereck. Relational instance-based learning. In *Proceedings of the thirteenth International Conference on Machine Learning*, 1996
- E. Eskin, A. Arnold, M. Prerau. L. Portnoy, and S. Stolfo. A Geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In *Data mining for Security Applications*, 2002.