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Summary of Research Needs in Aviation Safety

• Aircraft aging and durability
– Full fundamental knowledge about legacy aircraft
– Start on knowledge about likely emerging materials and structures

• On-board system failures and faults – airframe, propulsion, aircraft systems (physical and 
software)

– Early prediction, detection and diagnosis
– Prognosis
– Mitigation

• Monitoring for problems before they become accidents
– Vehicle issues
– Airspace issues

• Loss-of-control
– Understanding aircraft dynamics of current and future vehicles in damaged and upset 

conditions
– Control systems robust to the unanticipated and anticipated
– Aircraft guidance for emergency operation

• Flight in hazardous conditions
– Modeling and sensing airframe and engine icing and icing conditions
– Sensing and portraying environmental hazards

• New operations
– Design of robust collaborative work environments
– Design of effective, robust human-automation systems
– Information management and portrayal for effective decision making

Integrated Vehicle 

Health 

Management



Integrated Vehicle Health Management: 
An Aviation Safety Project
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Intelligent Data Understanding Group

• The IDU group develops novel algorithms to 
detect, classify, and predict events in large 
data streams for scientific and engineering 
systems.

• Emphasis is on 

– Discovery algorithms: uncovering the unexpected

– Scalability

– Fleet-wide or system-wide issues in aeronautics



vs.…

 

The Forensic (Historic) Approach to 
Accident Prevention



… a More Prognostic Approach
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Discovery of Anomalies

• In early January 2007, International Space Station Early External Thermal 
Control System developed an ammonia gas bubble

• Bubble noted by ISS controllers only ~9 hours before it “burst” and 
dissipated back into liquid

Ammonia bubble

begins to grow

Ammonia bubble 
bursts

Temperature set

point change

Controllers detect
bubble

via normal

telemetry

Initial IMS indications 
~ 6 days prior to detection via standard 

techniques



Scalability and Accuracy

1,000 the amount of 
data for prognostics

20% of the 
computation time



Key areas of research in data mining

Research Topic Areas
• Anomaly Detection

• Prediction Systems

• Text Mining

• Mining Distributed Data Systems 
and Sensor Networks

• High Performance Time Series 
Search 

Application Areas
• Safety critical systems

• Large scale distributed systems

• Earth Sciences

• Space Sciences

• Systems Health Data from 
Aeronautical and Space Systems



Program Background

 Genesis:  Aviation System Monitoring 
& Modeling (ASMM)

 ASMM focus
 Automated discovery tools
 Data fusion
 Finding unexpected events
 Trends and Causation

 Within confidentiality constraints

 Customers / Stakeholders
 FAA
 Air carriers
 Organized labor

 Milestones
 FY09:  Deployment of data mining tools 

within ASIAS
 FY12: Forecasting technology that has 

the ability to predict at least 3 known 
anomalies in real or emulated data of 
large, fleetwide, heterogeneous data 
sources.

 Hampered by lack of access to ASIAS 
data

ASMM

FOQA
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ASAP
Technologies

APMS

DNFA

ASAP ASRS

DNAA

Morning
Report

Sequence 
Miner MARIANA

Inductive 
Monitoring 

System
Text Cube

Virtual 
Sensors

Distributed 
Anomaly 
Detection



Algorithms for Distributed Data 
Mining (DDM) in Large 

Asynchronous Networks

Kanishka Bhaduri, Ph.D.
Mission Critical Technology Inc.

NASA Ames Research Center

•Joint work with: R. Wolff, C. Giannella, H. Kargupta, A. N. Srivastava



Data Mining and Distributed Data Mining

• Data Mining: 

– Discovery of actionable information from large 
databases with emphasis on:

• Scalability

• Communication

• storage 

• Distributed data mining (DDM)

– Mining data when data and computing resources 
are distributed



Possible Aviation Related Distributed Systems
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Typical Problem Statement
• Consider large network of nodes

– Each node has local data which change over time

– Each node exchanges messages

• Develop data mining algorithms for mining 
global data

• Constraints:
– low communication overhead

– no synchronization

– failure resistance

– result provably correct with respect to 
centralized techniques



Provable Correctness

• If a distributed data mining algorithm is 
‘provably correct’ that means that the 
algorithm will give you the same answer if the 
data is centralized or distributed.

• Most attempts at distributed data mining do 
not obey this principle.

• This verification and validation is critical for 
safety applications.

The way you happen to store data should not change 
the results of a safety study.



Airline 
1

Airline 
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3

Airline 
N

Proprietary Data
Data from real aircraft

Limited publication and distribution rights

…

Data Mining Algorithm

Data Mining Algorithm

Data Mining Algorithm 

Data Mining Algorithm

Provable Correctness of Distributed Data Mining Algorithms

• Suppose the output of each data 
mining algorithm gives the top 
anomalies in each database.
• The consensus of the output of 
the algorithms could indicate “no 
significant anomalies present” in 
the databases.
• If we centralize the data and 
then analyze it, the algorithm must 
still say “no significant anomalies 
present.”
• For non-provably correct 
algorithms, there may be a 
disagreement.



Distributed National Archives (circa 2007)



Preliminary Results of 
Flow Control Valve 

Data Mining Activity 
Supporting the 

Flight Readiness Review for STS-119

Ashok N. Srivastava Ph.D. 

Principal Investigator, ARMD-IVHM

Data Mining Group Lead

Dave Iverson, ARC

Bryan Matthews, SGT

February 17, 2009



Overview

• Ashok received a request to support the Flight Readiness Review for STS-119 which 
was scheduled for 2/20/09 as the Data Mining Subject Matter Expert.

• Data mining algorithms developed at NASA were applied to these data to 
determine whether any anomalies can be detected in STS-126 and its predecessor 
flight STS-123 for Space Shuttle Endeavor.



Algorithms and Data

• IMS (Inductive Monitoring System):  a data point 
is anomalous if it is far away from clusters of 
nominal points.

• Orca: a data point is anomalous if it is far away 
from its nearest neighbors.

• Virtual Sensor:  a data point is anomalous if the 
actual value is far away from the predicted value.  

• Data:  13 pressure, temperature, and control 
variables related to the Flow Control Valve 
subsystem.



IMS Anomaly Score



IMS Anomaly Score



IMS Anomaly Score



Virtual Sensor: STS-118 and STS-126

• Redlines 
correspond to 3-

sigma nominal error 
rate on STS-118.  

•STS-126 shows 
anomalous behavior 
after 93.6 seconds.



Virtual Sensor: STS-123 and STS-126

• Redlines 
correspond to 3-

sigma nominal error 
rate on STS-123.  

•STS-126 shows 
anomalous behavior 
after 93.6 seconds.



Virtual Sensors with Adaptive Thresholds

A. N. Srivastava, B. Matthews, D. Iverson, B. Beil, and B. Lane, “Multidimensional 
Anomaly Detection on the Space Shuttle Main Propulsion System:  A Case Study,” 
submitted to IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2009.



SequenceMiner

Identifying Anomalous Flights 
from Discrete Data



Problem Specification

• Develop an approach to model the behavior of 
discrete sensors in an aircraft during flight.

• Focus is on primary sensors that record pilot actions.

• The aim is to discover atypical behavior that has 
possible operational significance.



Solution

We developed sequenceMiner, 
Each flight is analyzed as a sequence of events, taking into 

account the order in which switches change values as well 
as the frequency of occurrence of switches.

Two Tasks:

Given a group of flights, find flights that are anomalous 
compared to the rest of the flights in the group.

Given a flight known to be anomalous, describe the anomalies 
in the flight and the degree to which they are anomalous.



Incorporating Operational Information

Switch Weight:
A weight is attached to each switch.

A measure of its importance to flight based on a discussion with SMEs.

In the measure of similarity, the weights of the switches as well as 
the number of switches out of sequence are considered.

Ignore deviations with a small time gap:
Suppose the algorithm finds that a switch was not pressed when it 

was expected.
It searches to see if the switch was pressed within one minute of the 

expected time.
If the switch was pressed within a minute of the time point, it ignores the 

alarm.



Flight 1147

Captain Cirino’s comments: “Landing gear goes up and down more than once. Go-around. Unable to 
determine pilot or ATC-related. Low descent after bringing landing gear up. Needs to be investigated (with 

flap information applied).”



Flight 1147 Flight Path



Change-in-Runway Study

There is evidence that a change in landing 
runway during approach is a causal factor 
in computer errors.

Can sequenceMiner find evidence of 
mode confusion?
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Flight Management System (FMS) Switch Activations on 
Approach with a CIR Event

SME opinion:  No evidence of mode confusion.



Switch Activations during a 
Change to a Parallel Runway

(NOTE: Approximately same time interval as previous slide)
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a  = out of sequence switch activation detected by seqeunceMiner

SME opinion:  Possible evidence of mode confusion.
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Switch Activations during a 
Change to a Crossing Runway

SME opinion:  Possible evidence of mode confusion.



A flight’s anomalous behavior can be characterized by it’s 
missing and extra switches, which sequenceMiner is able to 
describe.

We applied sequenceMiner to the CIR study and identified 
instances of mode confusion occurring during a CIR.

An article describing the sequenceMiner algorithms in detail, 
along with associated experimental results has been accepted 
for publication.

We have started the process to release sequenceMiner as Open 
Source software. 

sequenceMiner Conclusions



Some Partners of the IVHM Project

http://en.wikipedia.org/wiki/File:EasyJet_logo.png
http://www.onera.fr/english.php
http://en.wikipedia.org/wiki/File:Southwest_Airlines_Logo.svg
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