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Data and Goals

« Textual reports of problems/anomalies

| WAS FLYING THE KATANAWITH ASTUDENT AND ON DOWNWIND THE FUEL
PRESSURE DROPPED TO ZERO, AND THE ENG WAS CUTTING OFF. |
VERIFIED FUEL PUMP WAS ON AND IT WAS ON. BY THE TIME WE TURNED
SHORT FINAL, THE PROP STOPPED AND WE LANDED THE AIRPLANE SAFELY.
THEN WE CALLED CASTLE UNICOM TO SEND THE FUEL TRUCK

« Topic Modeling:
— Key topics discussed, types of events, etc.
— Unsupervised analysis
« Text Classification:
— Given a report, what is its anomaly/problem category

— Supervised analysis
 Use past category labeled reports to train
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Graphical Models: What and Why *

Statistical Machine Learning

— Build diagnostic/predictive models from data

— Uncertainty quantification based on (minimal) assumptions
The 1.1.D. assumption

— Data is independently and identically distributed

— Example: Words in a doc are drawn i.i.d. from the dictionary
Graphical models

— Assume (graphical) dependencies between (random) variables

— Closer to reality, domain knowledge can be captured

— Learning/inference is much more difficult

Bayesian Networks (BN)

— Directed graphs, causal dependency

Graphical Models



Example I: Burglary Network
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Example II: Car Problem Diagnosis
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Latent Variable Models

« Bayesian network with hidden variables
— Semantically more accurate, less parameters

« Example: Compute probability of heart disease
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Topic Models

*

Document is a mixture of topics

Topic is a distribution over words

[ ] maintenance

Maintenance: check gear fuel
(0.02 0.01 0.01 ...)

I landing LCanding: undercarriage height runway ...
- weather (0.025 002 001 ...)
Weather: fog ice snow ...

(0.04 0.03 0.02 ...)

To generative a word: (i) Pick a topic, (ii) Sample a word

frozen

ice

runway
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Example I: Topics in Slashdot
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Example II: Topics in Newsgroups

windows
dos
files
file
disk
drive
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1bm
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armenia
genocide
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radar
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hockey
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play
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pens
players
league
player
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bible
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life
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moral
arabs
arab
absolute
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morality
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lebanese
people
civilians
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Latent Dirichlet Allocation (LDA)

/ a distribution over topics

Dirichlet priors _— for each document
/ 29 ~ Dirichlet(c)
distribution over words @ topic assignment
for each topic ~ _r—for each word

~ :
#U) ~ Dirichlet(p) / z; ~ Discrete(z (@)
T

N word generated from
|+ assigned topic

@ gl w; ~ Discrete(g®))
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LDA Generative Model: 2 Documents

Graphical Models
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Results: Topics in ASRS Reports

A set of reports from ASRS: problems related to
(i) Flight crew performance, (ii) Passenger problems, (iii) Maintenance issues

Flight Crew Passenger Maintenance
runway passenger aircraft
approach flight maintenance
aircraft attendant engine
departure captain 272
altitude seat flight
turn told minimum equipment list
time asked check
atc back fuel
flight attendants time
tower aircraft gear

Graphical Models
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Two-Dimensional Visualization for Reports
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Two-Dimensional Visualization for Reports

300 -

200

=
—
I

200

/Altimeter has a problem, but\ 1123
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Two-Dimensional Visualization for Reports
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Mixed Membership of Reports
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LDA vs FastLDA
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Text Classification *

e.g. xxx did not work during landing because
mixed _ _J&__,| of the bad weather...
membership over
topics Maintenance (0.2) Landing (0.3)

Weather(0.5)

erpretable % €.J. maintenance, mechanical, inspection...
Maintenance Problem

LDA &
Fast LDA

Discriminative Latent Dirichlet Allocation
(DLDA)

iedaril d Cidassitier 1ol UOCUITIETILS & 1dDEILS W

Can use labels —@—» :
classify new documents

SVM,

\

logistic s/

- o aed
regression, |/ /e/t(iérshi é’B
etc. ? m P

no interpretable @
topics
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Discriminative LDA

« Supervised, learns classifier from training data

« Model generates documents and the labels
— LDA for documents

— Logistic Regression on topic proportions for labels
— Number of topics independent of number of classes

1st word

2nd word

nth word

I

I

1st word’s topic

2nd word’s topic

Class label for the
documents

nth word’s topic

Graphical Models
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Variational EM for DLDA: Overview

» Given: Documents (X), Labels (Y)
« Model: Parameters (6©), Latent variables (Z)
« Maximum likelihood estimation of parameters

® =argmax log p(X,Y |®) = arg max E[log p(X,Y,Z|®)]
« EM-based algorithm:
— E-step: Use p(Z|X, Y, ©) to compute E[log p(X,Y,Z| ©)]
— M-step: Compute ©* which maximizes E[log p(X,Y,Z| ©)]
e Issues
— p(Z|X, Y, ©) cannot be obtained in closed form
— Computing E[log p(X,Y, Z| ©)] is intractable
Variational Inference
— Approximate p(Z|X, Y) using q(Z|y)
— Choose y to make q(Z[|y) ~ p(Z|X,Y,O)
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DLDA vs Others (NB,vMF,SVM,LR)

Fast DLDA with
Increasing # topics

Generative models

Classification
algorithms

Nasa (Classic3 Cmu- Cmu- Cmu-

diff sim salme

Fast DLDA | 0.9237 0.6756 0.9800 0.8653 0.7900
(c) +0.0163 | 40.0234 | 4+0.0102 | +0.0182 | =+0.0315

Fast DLDA | 0.9232 0.6858 0.9747 0.8713 0.8458
(c+15) +0.0144 | 4+0.0216 | +0.0121 | +0.0264 | 4+0.0214
Fast DLDA | 0.9301 0.683% 0.9817 0.8707 0.8/68
(c+30) £0.0128 | 40.0234 | +0.0099 | +0.0228 | +0.0190

Fast DLDA | 0.9237 0.6854 0.9823 0.8700 0.8150
(c450) +0.0138 | 40.0211 | £0.0083 | +0.0230 | 40.0184

Fast DLDA | 0.9261 0.6866 0.9760 0.8718 0.8347
(e-+100) +0.0102 | +£0.0245 | +0.0108 | +£0.0182 | +0.0187

) 0.9216 0.6509 0.9530 0.7447 0.7600
vIME +0.0113 | 40.0246 | +0.0071 | +0.0214 | 40.0347

B 0.933/ 0.6766 0.95813 0.8613 0.8410
+0.0094 | +0.0230 | +0.0069 | +0.0216 | +0.0262

R 0.9209 0.6396 0.9553 0.6750 0.4823
+0.0157 | 40.0252 | +0.0157 | +0.1330 | =+0.1283

S 0.9192 0.6854 0.9563 0.8357 0.8120
' +0.0146 | 40.0278 | +£0.0105 | +0.0156 40.203

Graphical Models

Larger # topics (k>c) usually => higher accuracy.
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DLDA vs Others (NB,vMF)

Fast DLDA with
Increasing # topics

Generative models

Classification
algorithms

Nasa Classic3 Cl%m_ Cl.ml_ Cmu-
dift sim same

Fast DLDA 0.9237 0.6756 0.9800 0.8653 0.7900
(c) +0.0163 +0.0234 +0.0102 +0.0182 +0.0315
Fast DLDA 0.9232 0.68558 0.9747 0.8713 (0.8458
{e+15) +0.0144 +0.0216 +0.0121 +0.0264 +0.0214
Fast DLDA 0.9301 (.6835 09817 0.8707 0.8468
) 0.9301, 0.6866, 0.9823, 0.8718, 0.8468
Fast DLDA
(c+50) | womas | 400011 | wo00sa | w00 | +001sa
Fast DLDA A VvV V V V
(e+100) | TU.ULUZ | TU.U&49 | TU.WIUO | TU.ULO0&S | TU.ULOI
CMF 0.9216 | 0.6509 | 0.9530 | 0.7447 | 0.7600

0.9334, 0.6766, 0.9813, 0.8613, 0.8410
NB +0.0094 | +£0.0230 | +0.0069 | +0.0216 | +0.0262
R 0.9209 0.6396 0.9553 0.6750 0.4823

+0.0157 +0.0252 +0.0157 +0.1330 +0.1283
SVM 0.9192 0.685H4 0.9563 0.8357 0.8120
' +0.0146 +0.0278 +0.0105 +0.0156 +0.203
p-value: 0.3328, 0.0161, 0.6709, 0.0365, 0.1128

Graphical Models
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DLDA vs Others (SVM,LR)

Fast DLDA with
Increasing # topics

Generative models

Classification
algorithms

Nasa Classic3 C'I?m' C"I.““' Cmu-
dift sim same

Fast DLDA | 0.9237 0.6756 0.9800 0.8653 0.7900
(c) +0.0163 | +0.0234 | +0.0102 | +0.0182 | +0.0315
Fast DLDA | 0.9232 0.6858 0.9747 0.8713 0.8458
(c+15) +0.0144 | +0.0216 | +0.0121 | +0.0264 | +0.0214
Fast DLDA | 0.9301 0.6538 0.0817 0.8707 0.8468
-
\e+t) 0.9301, 0.6866, 0.9823, 0.8718, 0.8468
Fast DLDA
(c+50) +0.0138 | +0.0211 | +0.0083 | +0.0230 | +0.0184
Fast DLDA | 0.9261 0.6866 0.9760 0.8718 0.8347
(e+100)

V V V V V
vME +0.0113 | +0.0246 | 40.0071 | +0.0214 | +0.0347
B 0.9334 0.6766 0.9513 0.8613 0.8410

+0.0094 | +£0.0230 | +£0.0069 | +0.0216 | +0.0262
LR 0.9209 | 0.6396 | 09553 | 06750 | 0.4823

0.9209, 0.6854, 0.9563, 0.8357, 0.8120
.q T T T T T T ST
VM +0.0146 \ +0.0278 ‘ +0.0105 \ +0.0156 \ +0.203
p-value: 0.0087, 0.4205, 0.0025, <0.001, <0.001

Graphical Models
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DLDA vs LDA

Nasa Classiod Cn-lu— C-I-nu— Cmu-

diff sim same

Std 0.9140 0.6733 0.9677 0.8143 0.5633
LDA +0.0140 | +£0.0254 +0.0069 | £ 0.0161 | +0.0243
Fast 0.9194 0.6748 0.9773 0.8553 0.7730
LDA +0.0148 | £ 0.0242 | £ 0.0110 | £0.0197 | 40.0205
Std 0.9220 0.6710 0.9600 0.8140 0.6267
DLDA | £0.0127 | £0.0256 +0.0089 +0.0252 +0.0348
Fast 0.9237 0.6756 0.9800 0.8653 0.7900
DLDA | £0.0163 | +0.0234 | +£0.0102 | £0.0182 | 4+0.0315
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Topics inferred by DLDA

runway, alrcratt, approach, tower, cleared, landing, airport,
turn, taxi. traffic, final, controller

check, engine, mechanical, installed, part, inspection, work

malntenance, alrcraft, flight, minimum equipment list, time,

passenger, flight, attendant, told, captain, seat,asked,
back, attendants, aircratt, lavatory, crew

passenger, flight. medical., attendant, emergency, aircratt
doctor, landing, attendants, captain, oxygen,paramedics

= First three topics correspond to three classes respectively
= Topic 4 is a subclass of class (3)

Graphical Models

Flight crew

Maintenance

Passenger

Passenger Medical
Emergency
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Summary

« LDA and FastLDA

— Topic discovery from documents
— Efficient algorithms, interpretable results, visualization

 Discriminative LDA
— Text classification using topic models
— Competitive with state-of-the-art (SVM,NB)
— More interpretable

e Future Work

— Leverage supplemental information in ASRS data

« E.g., day/time, location, airport, time of year, equipment, etc.
— Multi-category prediction

« A document may report multiple different porblems

Graphical Models
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