Graphical Models for Text Analysis and its Applications

Arindam Banerjee <u>banerjee@cs.umn.edu</u>

Dept of Computer Science & Engineering University of Minnesota, Twin Cities

ASIAS Tools & Technology Symposium

July 27-28, 2009

Aviation Safety Reports (NASA)

and disseminates vital information to the aviation community.

REPLAY

REPORT TO ASRS

Try our new Electronic Report Submission below.

- ▶ Electronic Report Submission
- Paper/US Mail Submission

QUICK LINKS

Below are a few useful links.

- ASRS Database Online
- ASRS Report Sets
- ASRS Program Briefing
- ASRS General Aviation Weather Encounters Report

CALLBACK	VIEW ALL	
CALLBACK is ou Publication. Rea	r Monthl ad and s	y Safety ubscribe below.
Issue #343 Issue #342	HTML	PDF PDF
Join CALLBAC	K E-Notil	fication list

ASRS Website Administrator: Mariana Carmona || NASA/ASRS Director: Linda Connell NASA Privacy Statement || NASA Home || NASA Ames

Data and Goals

• Textual reports of problems/anomalies

I WAS FLYING THE KATANA WITH A STUDENT AND ON DOWNWIND **THE FUEL PRESSURE DROPPED TO ZERO, AND THE ENG WAS CUTTING OFF**. I VERIFIED FUEL PUMP WAS ON AND IT WAS ON. BY THE TIME WE TURNED SHORT FINAL, THE PROP STOPPED AND WE LANDED THE AIRPLANE SAFELY. THEN WE CALLED CASTLE UNICOM TO SEND THE FUEL TRUCK

- Topic Modeling:
 - Key topics discussed, types of events, etc.
 - Unsupervised analysis
- Text Classification:
 - Given a report, what is its anomaly/problem category
 - Supervised analysis
 - Use past category labeled reports to train

Graphical Models: What and Why

- Statistical Machine Learning
 - Build diagnostic/predictive models from data
 - Uncertainty quantification based on (minimal) assumptions
- The I.I.D. assumption
 - Data is independently and identically distributed
 - Example: Words in a doc are drawn i.i.d. from the dictionary
- Graphical models
 - Assume (graphical) dependencies between (random) variables
 - Closer to reality, domain knowledge can be captured
 - Learning/inference is much more difficult
- Bayesian Networks (BN)
 - *Directed* graphs, causal dependency

Example I: Burglary Network

Example II: Car Problem Diagnosis

- Bayesian network with hidden variables
 - Semantically more accurate, less parameters
- Example: Compute probability of heart disease

Topic Models

Document is a mixture of topics

Topic is a distribution over words					
Maintenance:	check gear fuel				
	(0.02 0.01 0.01)				
Landing: unde	ercarriage height runway				
(0	0.025 0.02 0.01)				
Weather: fog	ice snow				
(0.04	0.03 0.02)				

To generative a word: (i) Pick a topic, (ii) Sample a word

Example I: Topics in Slashdot

music	web	scientists	internet	games
apple	google	nasa	broadband	gaming
itunes	search	space	domain	game
riaa	yahoo	researchers	net	$\operatorname{nintendo}$
ipod	site	science	network	sony
wikipedia	online	years	verisign	xbox
$\operatorname{digital}$	sites	earth	bittorrent	gamers
napster	ebay	found	i cann	wii
file	amazon	brain	service	$\operatorname{console}$
drm	engine	university	access	video
songs	users	human	voip	article
industry	browser	research	dns	$\operatorname{microsoft}$

Example II: Topics in Newsgroups

windows	$\operatorname{turkish}$	game	god	israeli
dos	$\operatorname{armenian}$	team	bible	israel
files	$\operatorname{armenia}$	games	$\operatorname{christian}$	moral
file	genocide	hockey	jesus	arabs
disk	turkey	year	church	arab
drive	radar	play	$\operatorname{christians}$	absolute
port	$\operatorname{armenians}$	season	a the ism	killed
program	soviet	baseball	religion	morality
irq	list	pens	people	lebanon
ftp	turks	players	faith	lebanese
modem	detector	league	life	people
ibm	people	player	$\operatorname{christianity}$	$\operatorname{civilians}$

Latent Dirichlet Allocation (LDA)

LDA Generative Model: 2 Documents

A set of reports from ASRS: problems related to

(i) Flight crew performance, (ii) Passenger problems, (iii) Maintenance issues

Flight Crew	Passenger	Maintenance
runway	passenger	aircraft
approach	flight	maintenance
aircraft	attendant	engine
departure	captain	ZZZ
altitude	seat	flight
turn	told	minimum equipment list
time	asked	check
atc	back	fuel
flight	attendants	time
tower	aircraft	gear

Two-Dimensional Visualization for Reports

Red: Flight Crew

Blue: Passenger

Green: Maintenance

Two-Dimensional Visualization for Reports

Two-Dimensional Visualization for Reports

Mixed Membership of Reports

LDA vs FastLDA

Text Classification

Discriminative LDA

- Supervised, learns classifier from training data
- Model generates documents and the labels
 - LDA for documents
 - Logistic Regression on topic proportions for labels
 - Number of topics independent of number of classes

Variational EM for DLDA: Overview

- Given: Documents (X), Labels (Y)
- Model: Parameters (Θ) , Latent variables (Z)
- Maximum likelihood estimation of parameters

 $\Theta^* = \arg \max \log p(X, Y | \Theta) = \arg \max E[\log p(X, Y, Z | \Theta)]$

Θ

- EM-based al^gorithm:
 - E-step: Use $p(Z|X, Y, \Theta)$ to compute $E[\log p(X, Y, Z|\Theta)]$
 - M-step: Compute Θ^* which maximizes $E[\log p(X,Y,Z|\Theta)]$
- Issues
 - $p(Z|X, Y, \Theta)$ cannot be obtained in closed form
 - Computing $E[\log p(X, Y, Z | \Theta)]$ is *intractable*
- Variational Inference
 - Approximate p(Z|X, Y) using $q(Z|\gamma)$
 - Choose γ to make $q(Z|\gamma) \sim p(Z|X,Y,\Theta)$

DLDA vs Others (NB,vMF,SVM,LR)

			Naca	Classic2	Omu-	Omu-	Omu-
			nasa	Classics	diff	$_{ m sim}$	same
	(Fast DLDA	0.9237	0.6756	0.9800	0.8653	0.7900
		(c)	± 0.0163	± 0.0234	± 0.0102	± 0.0182	± 0.0315
		Fast DLDA	0.9232	0.6858	0.9747	0.8713	0.8458
		(c+15)	± 0.0144	± 0.0216	± 0.0121	± 0.0264	± 0.0214
Fast DLDA with	2	Fast DLDA	0.9301	0.6838	0.9817	0.8707	0.8468
increasing # topics		(c+30)	± 0.0128	± 0.0234	± 0.0099	± 0.0228	± 0.0190
C I		Fast DLDA	0.9237	0.6854	0.9823	0.8700	0.8150
		(c+50)	± 0.0138	± 0.0211	± 0.0083	± 0.0230	± 0.0184
		Fast DLDA	0.9261	0.6866	0.9760	0.8718	0.8347
		(c+100)	± 0.0102	± 0.0245	± 0.0108	± 0.0182	± 0.0187
	{	MF	0.9216	0.6509	0.9530	0.7447	0.7600
Generative models		VIVIF	± 0.0113	± 0.0246	± 0.0071	± 0.0214	± 0.0347
		ND	0.9334	0.6766	0.9813	0.8613	0.8410
		ND	± 0.0094	± 0.0230	± 0.0069	± 0.0216	± 0.0262
	ſ	IB	0.9209	0.6396	0.9553	0.6750	0.4823
Classification	J	LU	± 0.0157	± 0.0252	± 0.0157	± 0.1330	± 0.1283
algorithms		SVM	0.9192	0.6854	0.9563	0.8357	0.8120
u 1501101115	U	D V IVI	± 0.0146	± 0.0278	± 0.0105	± 0.0156	± 0.203

Larger # topics (k>c) usually => higher accuracy.

C

0

C-----

DLDA vs Others (NB,vMF)

			Naza	Clease	Cmu-	Cmu-	Cmu-
			nasa	Classics	diff	\sin	same
		Fast DLDA	0.9237	0.6756	0.9800	0.8653	0.7900
		(c)	± 0.0163	± 0.0234	± 0.0102	± 0.0182	± 0.0315
		Fast DLDA	0.9232	0.6858	0.9747	0.8713	0.8458
		(c+15)	± 0.0144	± 0.0216	± 0.0121	± 0.0264	± 0.0214
Fast DLDA with	2 [Fast DLDA	0.9301	0.6838	0.9817	0.8707	0.8468
increasing # topics		(c+30)	0.9301,	0.6866,	0.9823,	0.8718,	0.8468
		Fast DLDA $(a + 50)$	± 0.0128	± 0.0211		+0.0920	± 0.0184
		(c+50)	+0.0138	+0.0211	± 0.0083	+0.0230	+0.0184
	U	Fast DLDA	Λ	V	V	V	V
		(c+100)	± 0.0102	± 0.0245	± 0.0108	± 0.0182	± 0.0187
~	ſ	vMF	0.9216	0.6509	0.9530	0.7447	0.7600
Generative models	$\left\{ \right\}$		0.9334,	0.6766,	0.9813,	0.8613,	0.8410
	ų	NB	± 0.0094	± 0.0230	± 0.0069	± 0.0216	± 0.0262
		ID	0.9209	0.6396	0.9553	0.6750	0.4823
Classification		LIG	± 0.0157	± 0.0252	± 0.0157	± 0.1330	± 0.1283
algorithms	1	SVM	0.9192	0.6854	0.9563	0.8357	0.8120
argoritaniis			± 0.0146	± 0.0278	± 0.0105	± 0.0156	± 0.203

p-value: 0.3328, 0.0161, 0.6709, 0.0365, 0.1128

DLDA vs Others (SVM,LR)

	[Nece	Classic2	Cmu-	Cmu-	Cmu-
			nasa	Classica	diff	$_{ m sim}$	same
		Fast DLDA	0.9237	0.6756	0.9800	0.8653	0.7900
		(c)	± 0.0163	± 0.0234	± 0.0102	± 0.0182	± 0.0315
		Fast DLDA	0.9232	0.6858	0.9747	0.8713	0.8458
East DI DA with		(c+15)	± 0.0144	± 0.0216	± 0.0121	± 0.0264	± 0.0214
	2	Fast DLDA	0.9301	0.6838	0.9817	0.8707	0.8468
increasing # topics		(c+30) Fast DLDA	0.9301,	0.6866,	0.9823,	0.8718,	0.8468 -
		(c+50)	± 0.0138	± 0.0211	± 0.0083	± 0.0230	± 0.0184
		Fast DLDA	0.9261	0.6866	0.9760	0.8718	0.8347
		(c+100)	V	V	V	V	V
Generative models		vMF	± 0.0113	± 0.0246	± 0.0071	± 0.0214	± 0.0347
		ND	0.9334	0.6766	0.9813	0.8613	0.8410
	Ų	ND	± 0.0094	± 0.0230	± 0.0069	± 0.0216	± 0.0262
	ſ	LR	0.9209	0.6396	0.9553	0.6750	0.4823
Classification		LIU	0.9209,	0.6854,	0.9563,	0.8357,	0.8120
argorithms		SVM	± 0.0146	± 0.0278	± 0.0105	± 0.0156	± 0.203

p-value: 0.0087, 0.4205, 0.0025, <0.001, <0.001

DLDA vs LDA

	Naca	Classic	Cmu-	Cmu-	Cmu-
	Inasa	Classico	diff	\sin	same
Std	0.9140	0.6733	0.9677	0.8143	0.5633
LDA	± 0.0140	± 0.0254	± 0.0069	± 0.0161	± 0.0243
Fast	0.9194	0.6748	0.9773	0.8553	0.7730
LDA	± 0.0148	± 0.0242	± 0.0110	± 0.0197	± 0.0205
Std	0.9220	0.6710	0.9600	0.8140	0.6267
DLDA	± 0.0127	± 0.0256	± 0.0089	± 0.0252	± 0.0348
Fast	0.9237	0.6756	0.9800	0.8653	0.7900
DLDA	± 0.0163	± 0.0234	± 0.0102	± 0.0182	± 0.0315

1	runway, aircraft, approach, tower, cleared, landing, airport, turn, taxi, traffic, final, controller	Flight crew
2	maintenance, aircraft, flight, minimum equipment list, time, check, engine, mechanical, installed, part, inspection, work	Maintenance
3	passenger, flight, attendant, told, captain, seat, asked, back, attendants, aircraft, lavatory, crew	Passenger
4	passenger, flight, medical, attendant, emergency, aircraft doctor, landing, attendants, captain, oxygen, paramedics	Passenger Medical Emergency

- First three topics correspond to three classes respectively
- Topic 4 is a subclass of class (3)

Summary

- LDA and FastLDA
 - Topic discovery from documents
 - Efficient algorithms, interpretable results, visualization
- Discriminative LDA
 - Text classification using topic models
 - Competitive with state-of-the-art (SVM,NB)
 - More interpretable
- Future Work
 - Leverage supplemental information in ASRS data
 - E.g., day/time, location, airport, time of year, equipment, etc.
 - Multi-category prediction
 - A document may report multiple different porblems

References

- A. Banerjee, H. Shan, *Latent Dirichlet Conditional Naïve Bayes Models*, ICDM, 2007.
- D. Blei, A. Ng, M. Jordan, Latent Dirichlet Allocation, JMLR, 2003.
- D. Blei, J. McAuliffe, *Supervised Topic Models*, NIPS, 2007.
- H. Shan, A. Banerjee, *Bayesian Coclustering*, ICDM, 2008.
- H. Shan, A. Banerjee, *Mixed Membership Naïve Bayes Models*, TR-09-002, Dept of CSE, University of Minnesota, Twin Cities.
- H. Shan, A. Banerjee, *Discriminative Mixed Membership Models*, In submission.
- H. Wang, H. Shan, A. Banerjee, *Bayesian Cluster Ensembles*, SDM, 2009.

• Acknowledgements

- Research supported by NASA grant NNX08AC36A
- My Students: Hanhuai Shan, Amrudin Agovic