Prognostics Performance Evaluation

Abhinav Saxena¹, Jose Celaya¹, Bhaskar Saha², Sankalita Saha², Kai Goebel³ ¹Stinger Ghaffarian Technologies, Inc., ²Mission Critical Technologies, Inc., ³NASA ARC Prognostics Center of Excellence, NASA Ames Research Center CA

Objective

- Develop standard procedures and metrics to evaluate and compare performance of prognostic algorithms
- Develop a taxonomy/framework to define and describe a prognostics problem in a standardized manner

Motivation

- Performance evaluation methods customized to prognostics do not exist
- Researchers have loosely used ideas from diagnostics and other domains
- Prognostics performance evaluation is an "acausal" problem
 - Requires inputs from a future event, i.e. End-of-Life (EoL)
 - Classical methods are based on performance evaluation of casual systems, e.g. diagnostics
 - A confusion exists between offline and online performance evaluation

Approach

Shortcomings of Traditional Methods

- Traditional metrics do not encapsulate how predictions improve over time
 - In general predictions should improve as more data becomes available, but there is no provision to observe prediction evolution in time
- Prediction errors spaced in time should not be averaged as in diagnostic applications
 - Predictions made at different times are based on different amount of information
- Traditional metrics do not address the notion of performance relative to a reference point in time (t_{λ})
 - Prognostics is time critical, a very accurate but late prediction may be useless as compared to somewhat approximate but an early prediction
 - Predictions should get more accurate as EoL approaches,

- A standard methodology will help compare different approaches in a consistent manner
- A standardized performance evaluation will help in performance requirement specification

so errors should be penalized more as time passes by

• The reference point of interest (t_{λ}) may be chosen based on logistics constraints, risk absorbing capacity, rate of change of a dynamical system, etc. therefore, this calls for a comprehensive picture of performance spaced in time.

Prognostics Performance Metrics

to collect and classify performance metrics being used in a variety of domains like aerospace, finance, medicine, weather, etc.

 π is total probability mass of RUL pdf within α bounds

 t_{1} is time window modifier s.t. $t_{1} = t_{P} + \lambda (\text{EoL-} t_{P})$ r_* is the around truth RUL β is a preset probability threshold α (±) are the lower & upper bounds of the error

band s.t. $\alpha^{-} = r^{*}(\lambda)(1 - \alpha)$ and $\alpha^{+} = r^{*}(\lambda)(1 + \alpha)$

Performance Evaluation Tool

- Performance Evaluation helps researchers develop and improve their algorithms and methods
- This also helps in defining the requirements for prognostics

- A software tool has been developed to allow researchers evaluate their algorithms
- Tool is freely available for download from DaSHLink
 - Search on the web "DashLink + Performance Evaluator"

