GPU—based Tools for Computatlonal Astrophysics:
N—Body Integrators for Planetary Systems

Mario Juric/,
Eric Ford? (PI), Jorg Peters?,

Aaron Boley?, Young In Yeo?,
(Ameya Ganchha?, Jianwei Gao?)

(1) Hubble Fellow, Harvard University
(2) University of Florida

Mario Juric ric@cfa.harvard.edu>, Frida y October 16th, 2009.
CIDU/AISRP I shop, NASA Ames, Moffett Field, CA

GPGPU Tools for Computational Astrophysics

Overview

Motivation:

Computational challenges of extrasolar planet
characterization

Long-term few-body dynamics

GPU Computing: Many-core computing of
tomorrow, today

Progress so far: Initial tests and benchmarks

Moving forward: towards a GPU algorithm
toolbox

. . Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Motivation

The discovery of extrasolar
planetary systems is
providing insights into the
formation of our solar system
and humanity's place in the
universe.

Kepler Mission: A Search for Habitable Planets
(NASA)

Detecting and characterizing multiple planet systems is
particularly challenging, because accurately modeling
such a system with several highly non-linear
parameters is extremely computationally demanding.

. . Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Discovering extrasolar planets

51 Pegagi

Doppler Shift due to 100 Mass = 046 Myp /pin 4
Stellar Wobble

>
3

-
\ Unseen planat -,
_ L ==
~

Velocity (m s™%)

RMS = 5.60 m s~

0,6
Orbital Phape

Change in brightness from a planetary transit

Brightness

Planet(s) are nearly never observed
® directly; they’re inferred from their
(cumulative) effect on the host star.

—

s

Time

. . Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

A Three-planet System

A 21-parameter fit! (Bouchy et al. 2009)

HD181433 HARPS
PP =LA L R S L L B B B
w0 b E HDI181433 HARPS
-] 2 +_1|1|r|||+r|r|r|r|[||1|]|1|1|1|1|]|r|r|r|r|||r|r||1|1|1|1|||+1|1|r_+
20 & 3 - * + 7
E mf— —f 15 = .
> - 3 C]
14 0 F—————atr — - -
- 10 - —
10 - iy 8]
20 3 E [E &
o PN AP EPRT RPN AU PO PO T SO BV PO RO PO = E r]
P A L B L S B B B P B B AL B BRI r]
z L " | I3 0 F S e
= E 4] N i TATO Y T A t 3 -
§ pbeielia e :
o 3 E -5 []
E 3N Sl I AT IR VRN PO R RN B B RO C A . .
2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 N * 1 L + N
SN NN NN RN NN AN A A N NN F R AN N
JD - 2450000.0 [daysl 0.1 00 01 02 03 04 05 06 07 08 09 1.0 LI
¢
HD181433 HARPS HDI181433 HARPS
illllll |||||||||||||||||||||||||||||||||||||II|||II|IIII |||||It ‘|||||||||||||||||||| ||’
0 E 4 T * * i
15 =]
= E 5
10 - =
@ = 1 @ o[s A e L ITTT T Il e
E SE 4 £ °
> E >
ud | e LT T LT T Tt T SISPI Rt 1. ST o
C . -2
-5 = =
10 E = - I I
b L b Lo b b S b v b bs s Loy L 1 HIJTL|l|L|lIL|1|l||J|I|J|JI1|J|J|L|1|L|1|l|L|lI|J|JIJ+J|I|J|JILr
-0.1 00 01 02 03 04 05 06 07 08 09 1.0 11 -0.1 00 01 02 03 04 05 06 07 08 09 1.0 11
o 0 ¢

Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.

CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

The problem: Efficient few-body/many systems integration

Fitting potentially interacting planetary systems
requires a full N-body integration to compute the
RV curve of a trial system

Obtaining well sampled posteriors requires ~10°
trials (N-body integrations)

Optimally, this procedure would be automated,
with estimates updated whenever a new
observation is obtained

The bottleneck: mathematically intensive N-body
integrations of millions of few-planet system

Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.

NASA . .
PN [FM]SHP GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Throw more CPUs at the problem, or...

NVIDIA GeForce GTX 280 Graphics Card (~$400)

. Q i HHSHP GPGPU Tools for Computational Astrophysics Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009

CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

GPUs as Scientific Computing Engines

GT200
00
NVIDIA GPU
==lfe=|ntel CPU C80 G92
el Ultra
[k G80
(-
Q
—
5 500
= GT1
m
a
250 NV35 NV40 G70 3.2 GH=z
2 3.0 GHz Harpertown
NV30 CoreZ Duo ™
o @8 - & L 5
Jan Jun Apr Jun Mar Nov May Jun
2003 2004 20056 2006 2007 2008

GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX MV35 = GeForce FX 5950 Ultra

5392 = GeForce 9800 GTX G70 = GeForce 7800 GTX NWV30 = GeForce FX 5800

G80 = GeForce 8800 GTX MNV40 = GeForce 6800 Ultra

. . Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

GPU: Massively Multi-core Processor

Control ALU ALU
|
| | | | ALU ALU
|
| |
| | |
|
| |
' ' L
|
| | | CPU

EEEEEEEE

simple cores (ALUs)

gram control logic

Zero-overhead thread context
switching

N‘ASA [I . . Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
dns H SHP GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

GPU Design: Graphics Processing Units Heritage

All cores execute the same program on different data
Process large streams of data with small, independent,
arithmetic intensive, programs

m E.g., transforming the pixels of an image

m Transforming geometry in 3D games
m Shading polygons 3D games

Lots of raw computational power
m 80% of GPU transistors are devoted to math
m Fast basic arithmetic (single precision; DP ~8x slower)

m Hardware implementation of common transcendental functions (sin,
cos, exp, In, ...)

Excellent overlap with needs of typical scientific codes

N(QA . 3 Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
2 HSHP GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

@ EHEES

Not transparent for the programmer!

Explicitly write code that can execute in hundreds to
thousands of simultaneously running threads

Explicitly take care of GPU memory hierarchy:
manually load/store data into the cache

Think about “lower level” issues: caches, latencies,
bank conflicts, etc...

=> GPUs are somewhat more difficult to program
than traditional (single-core) CPUs.

But not by much!

. . Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Toy example: Monte Carlo Integration

7]- Plot[Cos[X] *X +X +EXp[-10+Sin[x]], {x, 0, 1}]

Out[2]=

In[4]:=

I:I.j‘t[_1]=

i e
0,005 |
- X
: X
[/ X
0.004 |- X
- I-'I .\'_‘X
N , X
0.003 | X %
L x
L X
0,002 (X
[X
0.001 | X S %
[/ 1 1 1 1 I —
0.2 0.4 0.6 0.8 1.0

NIntegrate [Cos[Xx] *Xx* X x Exp[-10* 8in[x]], {x, 0, 1}]

0.002066586

Area under the curve =

Area of the bounding rectangle x Points that fell below the curve / Number of points thrown

GPGPU Tools for Computational Astrophysics

Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

File Edit Directory Movement Diffview Merge

PUAREHQ ¢~= = -

/home/mjuric/projectsisimple_mc_integ_cuda_demo/mc_cpu.cp l

Window Settings Help

=

ff An ultra-simple random number generator
float rand{)

|
{
|

(straight out of NR)

static_long idum = 42;
long k;
float ans:
idum "= MASK; i/ KORing with MASK allows use of
k=idum/I0Q; J/ simple bit patterns for idum.
idum=TA*(idum-k*I0Q)-IR*+k; /¢ Compute idum={IA*idum) % IM w:
if (idum < ©) idum 4= IM; /i flows by Schrage's method,
ans=AM*idum; Jf Convert idum to a floating res
% idum "= MASK; /f Unmask before return.

return ans;

t

/ /

inline int mc_try(float x8, float x1, fleat f1)
{

float x
float ftry

= x0 + randj) * (x1-x0);

= ran@() * f1;

float f = cos(x) * x*x * exp(-10 * sin{x)):
return ftry < f;

1

double_execute kernel_cpu(int ntrials, float x0, float =1, float f1)

s
i)

i

i

int Nhits = @;
for{int i=0; i 's ntrials: i++)

i
1

Nhits += mc_try(x0, x1, f1);

CPU Code

return (double)Nhits / ntrials * (f1%(x1-x0)):

v 2 3T 2 ¥ a B C

AUTH
¥ -

O

B: [J’home;’mjurics’projects.l'simpIe_mc_integ_cuda_demm’mc_gpu.cu

123

J/ This array is how we access the "shared memory" (== cache) on the 3
@l =xtern _ shared long idums[]:

JfOAn ultra-simple random number generator (straight out of NR)
B _ device _float rand()

. long idum = idums|[threadIds.x];
long k:
float ans:
idum "= MASK; /4 XORing with MASK allows use of zero and other
k=idum/I0Q; /¢ simple bit patterns for idum.

idum=TA*(idum-k*I0) -IR*k;
if (ddum < O} idum += IM:
ans=AM*idum;

/¢ Compute idum={IA*idum) % IM without over-
/{ flows by Schrage's method.
/¢ Convert idum to a floating result.

idum "= MASK; /¢ Unmask before return.
idums[threadlde.x] = idum;
return ans:
¥
/ /

_ device_ _inline int mc_try{float =0, float x1, float f1)

float x
float ftry

*0 4+ rand() * (x1-x0);
ran@i) * f1;

float f = cos(x) * x¥x * exp(-10 * sin(x)):
return ftry < f;
i
_ global_ _wvoid mc_try kernel{int_*gptr Nhits,_int_seed@, _int ntrials, float x0, float x1, float 1)

ff initialize the random seed for this thread to this thread's global rank
idums[threadlds.x] = seedd + blockIdx, x*blockDim.x + threadIds. x;

int Nhits = @;
for{int i=0; i '= ntrials: i++)

{
Nhits 4= mc_try(x0, x1, f1);

} ' GPU Code

atomicAdd{gptr_MNhits, Nhits);

1

double execute kernel_gpu(int ntrials, float =0, float x1, float f1)

{
static int iter = O;
itersd !
const int nblocks = 24; Jf equal to number of SMs
const int threadsperblock = 256; A arbitrary (kind of...)
const int nthreads = nblocks*threadsperblock;
const int nperthread = ntrials / (nblocks * threadsperblock) + (ntrials % nthreads '= 8);
const int shmemrequired = threadsperblock*sizeof(int);
int Nhits = @;
int *gptr_Nhits;
cudaMalloc((void **)&gptr_Nhits, sizeoffint]):
cudaMemcpy(gptr_Nhits, &Nhits, sizeof{int), cudalemcpyHostToDevice);
mc_try_kernelz==nblocks, threadsperblock, shmemrequireds==(gptr_Nhits, iter*nblocks*threadsperblock*n
cudafemcpy (&Nhits, gptr_Nhits, sizeof{int), cudalemcpyDeviceToHost);
cudaFree({gptr_Nhits);
return {double)Nhits ¢ ntrials * (fl1%{x1-x0));
i

]E]Top line 19 |yl

AISRP Project (Pl Ford)

Goal: Write, benchmark, document, and release a set of
GPU primitives for solving ODEs, with application to N-
body integrators and planetary systems

Started July 15t this year

Plan:

Year 1: Assemble team, acquire GPU programming know-how,
implement simple Verlet, Hermite and symplectic schemes,
release initial versions

Year 2: Generalize to arbitrary number of bodies/complex ODEs,
research feasibility of multi-precision math, optimize, document
and release demonstration codes

Year 3: RK and BS kernels, time-symmetrized integrators,
implicit methods, code cleanup and final release.

Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.

GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Status and First Results

Assembling the team
Eric Ford (PI, University of Florida)
Jorg Peters (Co-l, UF CS Dept.) advising CS students
Young In Yeo (GS) leading the coding efforts
Dr. Aaron Boley (PD) just joined us (as of this week!)

Co-l Juric (Harvard) in extended visit to UF Jan 2010 (symplectic
codes)

Highly encouraging initial results
Fast random number generator library
Experimental Hermite integrator for the GPU

. . Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Hermite integration scheme for 1/r? systems

Makino (1991)
] BaS|C Step rip1 = Tt s(vitvip)dt+ 55(a —ag)(dt)?
Vitl = vi + %[Ei + a1)dt + %[,]1 — jz‘+1}[dﬂ2
- . .
where i=z= is the “jerk”
i v, (T * vji)Tjs
or explicitly Ji:"?g”ﬂ' { T }

Note: the jerk is computed in the same pass as the velocities
and positions; the 4" order accuracy improvement it brings
comes with a minimal computational cost.

(N
N\'A SA . 3 Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
A ﬁﬂgﬁp GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

A Simple CPU Impleme

ntation

Initial conditions

A

A

Compute
accelerations, jerks

A

A

Advance x,v,t

A

A

Store output

GPGPU Tools for Computational Astrophysics

Run for
N timesteps

Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

CPU parallelization (trivial: run N=N__,,. jobs at a time)

core

Sys 1 Sys 2
Initial conditions Initial conditions

A 4 A 4

Compute Compute

accelerations, jerks accelerations, jerks
. Run for I Run for
* ' N timesteps * ' N timesteps

A

Initial conditions Initial conditions

A 4 A 4
Compute Compute
accelerations, jerks accelerations, jerks

Run for Run for
* N timesteps * N timesteps

Advance x, vt Advance x, vt

A 4 A 4

Store output Store output

PR
AS

NASA . 3 Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
2 [IDMSHP GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

GPU parallelization (slightly nontrivial: N jobs in 1 process)

Separate device

All cores run
the same
program: have
to pack N jobs
into 1 process

Initial conditions for N systems

v

Upload to GPU

l

Compute
acceleration: accelerations, jerks

A\ 4 A 4

Advance x Advance x,v,t

Download results from GPU

v

Store output

GPGPU TOO[SfOT‘ Computational Astrophysics Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.

CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Benchmarks: CPU vs. OpenMP vs. GPU

el

SAP

Time per planetary system, CPU vs GPU

O 2 planets

| 3 planets

Computation time (ms)

O P N W H» U1 O N 0 ©

CRU (4 cores, GRU (4 cores,
F32) H64)

— —_em

GRUAB4) GRU(mixed) GRU(AR32)

CPU: 2x Dual-Core 2.6 GHz Opteron (total of 4 cores)
GPU: NVIDIA GeForce GTX 280 (240 cores)

GPGPU Tools for Computational Astrophysics

Credit: Implementation by Young In Yeo

Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Benchmarks: CPU vs. OpenMP vs. GPU

Speedup: CPU (single) vs. CPU (quad, OpenMP), vs GPU

1000
O 2 planets
| 3 planets
T 100
2
o
o)
3 1
&
1
GRUvs 4 cores, P64 GRUVs 4 cores, mxed GRUVvs 4 cores, FP32
~8-10x speedup over 4-core OpenMP, DP (!)
~110-120x speedup over 4-core OpenMP, SP (!!)
- Credit: Implementation by Young In Yeo
N‘AQA ﬁHSHP GPGPU Tools for Computational Astrophysics T s e

CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

About parallelization: TMTOWTDI

Benefits of trivial parallelization
Simple, excellent to begin with
Virtually the only way of accelerating few-body problems
Solves our problems

Other ways to do it for larger N (e.g., parallelize force/jerk
computation)

(Hamada et al. 2007, Portegies-Zwart 2007, ...)

Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.

GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Other Results

Similar speedups for Verlet scheme

Excellent speedups of random number generation
(~30x over 4-core CPU)

Promising initial benchmarks of Kepler equation
solvers (~10x over 4-core CPU)

Good progress so far

Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.

GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

A Moment of Zen...

“About GPUs, this is NOT...”
This is about CPUs, 5 years from now

We must:

(Re)learn how to code for 1000-core,
shared memory machines

Have the basic tools to efficiently use
them (e.g., ODE and N-body solvers)

Obtaining 10-100x speedup NOW
doesn’t hurt either ©

. . Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

Summary

Highly encouraging initial results (10x-100x speedups on
simple, constant-timestep, integrators)

On track for first release of usable and well documented
N-body kernels in Spring 2010.

Proceeding with development of complex ODE methods
(symplectic codes, adaptive timestep, etc.)

Note: General purpose uses beyond planetary dynamics

. . Mario Juric <mjuric@cfa.harvard.edu>, Friday, October 16th, 2009.
GPGPU Tools for Computational Astrophysics CIDU/AISRP Workshop, NASA Ames, Moffett Field, CA

