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Overview

Motivation:

Computational challenges of extrasolar planet
characterization

Long-term few-body dynamics

GPU Computing: Many-core computing of
tomorrow, today

Progress so far: Initial tests and benchmarks

Moving forward: towards a GPU algorithm
toolbox
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Motivation

The discovery of extrasolar
planetary systems is
providing insights into the
formation of our solar system
and humanity's place in the
universe.

Kepler Mission: A Search for Habitable Planets
(NASA)

Detecting and characterizing multiple planet systems is
particularly challenging, because accurately modeling
such a system with several highly non-linear
parameters is extremely computationally demanding.
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Discovering extrasolar planets
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A Three-planet System

A 21-parameter fit! (Bouchy et al. 2009)
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The problem: Efficient few-body/many systems integration

Fitting potentially interacting planetary systems
requires a full N-body integration to compute the
RV curve of a trial system

Obtaining well sampled posteriors requires ~10°
trials (N-body integrations)

Optimally, this procedure would be automated,
with estimates updated whenever a new
observation is obtained

The bottleneck: mathematically intensive N-body
integrations of millions of few-planet system
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Throw more CPUs at the problem, or...

NVIDIA GeForce GTX 280 Graphics Card (~$400)
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GPUs as Scientific Computing Engines
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GPU: Massively Multi-core Processor
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simple cores (ALUs)

gram control logic

Zero-overhead thread context
switching
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GPU Design: Graphics Processing Units Heritage

All cores execute the same program on different data
Process large streams of data with small, independent,
arithmetic intensive, programs

m E.g., transforming the pixels of an image

m Transforming geometry in 3D games
m Shading polygons 3D games

Lots of raw computational power
m 80% of GPU transistors are devoted to math
m Fast basic arithmetic (single precision; DP ~8x slower)

m Hardware implementation of common transcendental functions (sin,
cos, exp, In, ...)

Excellent overlap with needs of typical scientific codes
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@ EHEES

Not transparent for the programmer!

Explicitly write code that can execute in hundreds to
thousands of simultaneously running threads

Explicitly take care of GPU memory hierarchy:
manually load/store data into the cache

Think about “lower level” issues: caches, latencies,
bank conflicts, etc...

=> GPUs are somewhat more difficult to program
than traditional (single-core) CPUs.

But not by much!
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Toy example: Monte Carlo Integration

7]- Plot[Cos[X] *X +X +EXp[-10+Sin[x]], {x, 0, 1}]
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NIntegrate [Cos[Xx] *Xx* X x Exp[-10* 8in[x]], {x, 0, 1}]

0.002066586

Area under the curve =

Area of the bounding rectangle x Points that fell below the curve / Number of points thrown
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File Edit Directory Movement Diffview Merge

PUAREHQ ¢~= = -

/home/mjuric/projectsisimple_mc_integ_cuda_demo/mc_cpu.cp l

Window Settings Help

=

ff An ultra-simple random number generator
float rand{)

|
{
|

(straight out of NR)

static_long idum = 42;
long k;
float ans:
idum "= MASK; i/ KORing with MASK allows use of
k=idum/I0Q; J/ simple bit patterns for idum.
idum=TA*( idum-k*I0Q)-IR*+k; /¢ Compute idum={IA*idum) % IM w:
if (idum < ©) idum 4= IM; /i flows by Schrage's method,
ans=AM*idum; Jf Convert idum to a floating res
% idum "= MASK; /f Unmask before return.

return ans;

t

/ /

inline int mc_try(float x8, float x1, fleat f1)
{

float x
float ftry

= x0 + randj) * (x1-x0);

= ran@() * f1;

float f = cos(x) * x*x * exp(-10 * sin{x)):
return ftry < f;

1

double_execute kernel_cpu(int ntrials, float x0, float =1, float f1)

s
i)

i

i

int Nhits = @;
for{int i=0; i 's ntrials: i++)

i
1

Nhits += mc_try(x0, x1, f1);

CPU Code

return (double)Nhits / ntrials * (f1%(x1-x0)):

v 2 3T 2 ¥ a B C

AUTH
¥ -

O

B: [J’home;’mjurics’projects.l'simpIe_mc_integ_cuda_demm’mc_gpu.cu

123

J/ This array is how we access the "shared memory" (== cache) on the 3
@l =xtern _ shared  long idums[]:

JfOAn ultra-simple random number generator (straight out of NR)
B _ device _float rand()

. long idum = idums|[threadIds.x];
long k:
float ans:
idum "= MASK; /4 XORing with MASK allows use of zero and other
k=idum/I0Q; /¢ simple bit patterns for idum.

idum=TA*(idum-k*I0) -IR*k;
if (ddum < O} idum += IM:
ans=AM*idum;

/¢ Compute idum={IA*idum) % IM without over-
/{ flows by Schrage's method.
/¢ Convert idum to a floating result.

idum "= MASK; /¢ Unmask before return.
idums[threadlde.x] = idum;
return ans:
¥
/ /

_ device_ _inline int mc_try{float =0, float x1, float f1)

float x
float ftry

*0 4+ rand() * (x1-x0);
ran@i) * f1;

float f = cos(x) * x¥x * exp(-10 * sin(x)):
return ftry < f;
i
_ global_ _wvoid mc_try kernel{int_*gptr Nhits,_int_seed@, _int ntrials, float x0, float x1, float 1)

ff initialize the random seed for this thread to this thread's global rank
idums[threadlds.x] = seedd + blockIdx, x*blockDim.x + threadIds. x;

int Nhits = @;
for{int i=0; i '= ntrials: i++)

{
Nhits 4= mc_try(x0, x1, f1);

} ' GPU Code

atomicAdd{gptr_MNhits, Nhits);

1

double execute kernel_gpu(int ntrials, float =0, float x1, float f1)

{
static int iter = O;
itersd !
const int nblocks = 24; Jf equal to number of SMs
const int threadsperblock = 256; A arbitrary (kind of...)
const int nthreads = nblocks*threadsperblock;
const int nperthread = ntrials / (nblocks * threadsperblock) + (ntrials % nthreads '= 8);
const int shmemrequired = threadsperblock*sizeof(int);
int Nhits = @;
int *gptr_Nhits;
cudaMalloc((void **)&gptr_Nhits, sizeoffint]):
cudaMemcpy(gptr_Nhits, &Nhits, sizeof{int), cudalemcpyHostToDevice);
mc_try_kernelz==nblocks, threadsperblock, shmemrequireds==(gptr_Nhits, iter*nblocks*threadsperblock*n
cudafemcpy (&Nhits, gptr_Nhits, sizeof{int), cudalemcpyDeviceToHost);
cudaFree({gptr_Nhits);
return {double)Nhits ¢ ntrials * (fl1%{x1-x0));
i
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AISRP Project (Pl Ford)

Goal: Write, benchmark, document, and release a set of
GPU primitives for solving ODEs, with application to N-
body integrators and planetary systems

Started July 15t this year

Plan:

Year 1: Assemble team, acquire GPU programming know-how,
implement simple Verlet, Hermite and symplectic schemes,
release initial versions

Year 2: Generalize to arbitrary number of bodies/complex ODEs,
research feasibility of multi-precision math, optimize, document
and release demonstration codes

Year 3: RK and BS kernels, time-symmetrized integrators,
implicit methods, code cleanup and final release.
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Status and First Results

Assembling the team
Eric Ford (PI, University of Florida)
Jorg Peters (Co-l, UF CS Dept.) advising CS students
Young In Yeo (GS) leading the coding efforts
Dr. Aaron Boley (PD) just joined us (as of this week!)

Co-l Juric (Harvard) in extended visit to UF Jan 2010 (symplectic
codes)

Highly encouraging initial results
Fast random number generator library
Experimental Hermite integrator for the GPU
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Hermite integration scheme for 1/r? systems

Makino (1991)
] BaS|C Step rip1 = Tt s(vitvip)dt+ 55(a —ag)(dt)?
Vitl = vi + %[Ei + a1 )dt + %[,]1 — jz‘+1}[dﬂ2
- . .
where i=z= is the “jerk”
i v, (T * vji)Tjs
or explicitly Ji:"?g”ﬂ' { T }

Note: the jerk is computed in the same pass as the velocities
and positions; the 4" order accuracy improvement it brings
comes with a minimal computational cost.
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A Simple CPU Impleme

ntation

Initial conditions

A

A

Compute
accelerations, jerks

A

A

Advance x,v,t

A

A

Store output

GPGPU Tools for Computational Astrophysics

Run for
N timesteps
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CPU parallelization (trivial: run N=N__,,. jobs at a time)

core

Sys 1 Sys 2
Initial conditions Initial conditions

A 4 A 4

Compute Compute

accelerations, jerks accelerations, jerks
. Run for I Run for
* ' N timesteps * ' N timesteps

A

Initial conditions Initial conditions

A 4 A 4
Compute Compute
accelerations, jerks accelerations, jerks

Run for Run for
* N timesteps * N timesteps

Advance x, vt Advance x, vt

A 4 A 4

Store output Store output
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GPU parallelization (slightly nontrivial: N jobs in 1 process)

Separate device

All cores run
the same
program: have
to pack N jobs
into 1 process

Initial conditions for N systems

v

Upload to GPU

l

Compute
acceleration: accelerations, jerks

A\ 4 A 4

Advance x Advance x,v,t

Download results from GPU

v

Store output
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Benchmarks: CPU vs. OpenMP vs. GPU

el

SAP

Time per planetary system, CPU vs GPU

O 2 planets

| 3 planets

Computation time (ms)

O P N W H» U1 O N 0 ©

CRU (4 cores, GRU (4 cores,
F32) H64)

—  —_em

GRUAB4) GRU(mixed) GRU(AR32)

CPU: 2x Dual-Core 2.6 GHz Opteron (total of 4 cores)
GPU: NVIDIA GeForce GTX 280 (240 cores)
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Credit: Implementation by Young In Yeo
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Benchmarks: CPU vs. OpenMP vs. GPU

Speedup: CPU (single) vs. CPU (quad, OpenMP), vs GPU

1000
O 2 planets
| 3 planets
T 100
2
o
o)
3 1
&
1
GRUvs 4 cores, P64 GRUVs 4 cores, mxed GRUVvs 4 cores, FP32
~8-10x speedup over 4-core OpenMP, DP (!)
~110-120x speedup over 4-core OpenMP, SP (!!)
- Credit: Implementation by Young In Yeo
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About parallelization: TMTOWTDI

Benefits of trivial parallelization
Simple, excellent to begin with
Virtually the only way of accelerating few-body problems
Solves our problems

Other ways to do it for larger N (e.g., parallelize force/jerk
computation)

(Hamada et al. 2007, Portegies-Zwart 2007, ...)
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Other Results

Similar speedups for Verlet scheme

Excellent speedups of random number generation
(~30x over 4-core CPU)

Promising initial benchmarks of Kepler equation
solvers (~10x over 4-core CPU)

Good progress so far
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A Moment of Zen...

“About GPUs, this is NOT...”
This is about CPUs, 5 years from now

We must:

(Re)learn how to code for 1000-core,
shared memory machines

Have the basic tools to efficiently use
them (e.g., ODE and N-body solvers)

Obtaining 10-100x speedup NOW
doesn’t hurt either ©
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Summary

Highly encouraging initial results (10x-100x speedups on
simple, constant-timestep, integrators)

On track for first release of usable and well documented
N-body kernels in Spring 2010.

Proceeding with development of complex ODE methods
(symplectic codes, adaptive timestep, etc.)

Note: General purpose uses beyond planetary dynamics
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