

Outline

- Geometric Approach to High Dimensional Data
- MTool Objectives
- Dynamical System Methods
- Topological Methods

Geometric Approach to Hi-Dim Data

- Segmentation Problem
 - Extract hi-dim coherent structures from data
- Reconstruction Problem
 - -Observation data = projection of original objects
- Shape Problem
 - -Identify n-dim shapes which you can't visualize
- Model Reduction Problem
 - -Find faithful projection to lower dimensions

MTool Objectives

- Objective 1. Perform R&D on Hi-Dim SMD Data:
 - Dynamical Systems Theory
 - Discrete Differential Geometry
 - Computational Topology
- Objective 2. Provide Working Prototype Tool: MTool 1.0
 - Solve a series of significant problems with MTool 1.0
 - Use real SMD science data: astrophysics, Earth science
- Objective 3. Transfer Technology by:
 - Distribute MTool end of year 2.

Segmentation Problem

- Dynamical Systems Theory
 - Compute Invariant Manifolds of Periodic Orbits
 - -Extraction of Lagrangian Coherent Structures
 - Use velocity data from atmosphere, ocean

Ozone Hole 2002 (Lekien 2005)

Genesis Discovery Trajectory (Lo et al. 1998)

Shape Problem

- 3D Large Scale Structure of Universe
 - -2Mass Data: T. Jarrett, IPAC Caltech
- Use Algebraic Topology to compute shape
 - -Identify & Count Filaments, Voids

Counting Cycles & Holes with Homology

- Homology counts cycles & holes of a space M.
- Cycle C is ~ k-dimensional surface in M which cannot be deformed into a point in M:
 - -Circles on the sphere are not cycles
 - -Circles A, B on the torus are cycles
- K-dim cycles form a group H_k(M)
 - $-Dim(H_k(M)) = B_k = k^{th} Betti Number$
 - Counts number of independent cycles
 - -Generalizes Euler Characteristics $\chi(M)$.

Persistent Homology & Bar Codes

Cycles which persists are "real" features

PLEX Tool: Carlsson 2005.

Shape/Reconstruction Problem

Extract Shape from Point Cloud 2MASS Data

Bar Code On-Going Work ...

Not so easy to identify shapes here.

Next Steps

- Combine with Principal Component Analysis & Bayesian Methods
- Explore Other Homology Codes
- Visualization

Other Projects for FY10

- Dynamical Systems Methods
 - Galactic morphology via invariant manifolds
 - Atmospheric dynamics via Lagrangian Coherent Structures
- Tomographic methods for processing astrophysical images

References

Carlsson, G., Persistent homology and the analysis of high dimensional data,

Symposium on the Geometry of Very Large Data Sets, Fields Institute for Research in Mathematical Sciences, February 24, 2005.

Hodos, R., Applications of Computational Algebraic Topology to Data Analysis, USRP Internship Final Report, Spring Session 2009.

Lekien, F., Ross, S. D., and Newton, P. K. (in preparation, 2005d). http://www.lekien.com/~francois/research/

Lo, M. et al., *Genesis Mission Design*, AIAA Astrodynamics Conference, August, 1998, Boston, MA. Paper No. 98-4468. http://www.gg.caltech.edu/~mwl

Acknowledgements

- This work was conducted for the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
- Many thanks to AISR Program for supporting this work.
- Many thanks to USRP Internship Program and the JPL Education Office for supporting this work.
- Thanks to T. Jarrett for providing the latest 2MASS data.
- Persistent Homology Tool, *PLEX*, provided by Gunner Carlsson's group, Stanford University