Automatic Detection of Sub-Kilometer Craters in High Resolution Planetary Images

PI: Tomasz F. Stepinski, Lunar and Planetary Institute

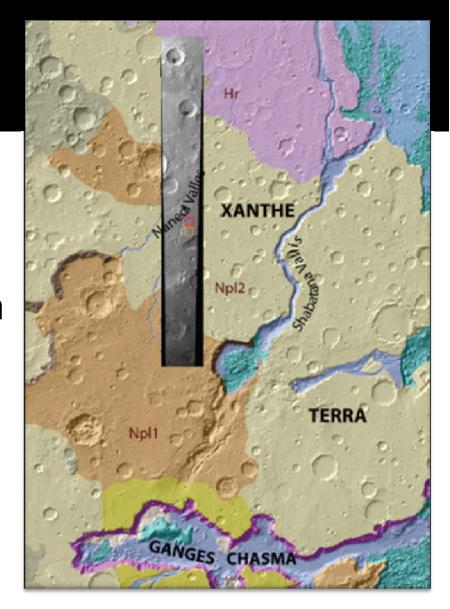
Co –PI: Wei Ding, University of Massachusetts Boston

Motivation

- Impact craters are among the most studied features on surfaces of planets
 - Measuring remotely the relative ages of geologic formations on planets
 - The nature of degradational processes
 - Regional variations in geologic material
 - Distribution of subsurface volatile
 - Etc.
- No comprehensive catalogs of smaller, subkilometer craters exist for any planetary body

Project objective

 To study and deliver a research-grade solution for automated detection of sub-kilometer size craters in high resolution planetary images.



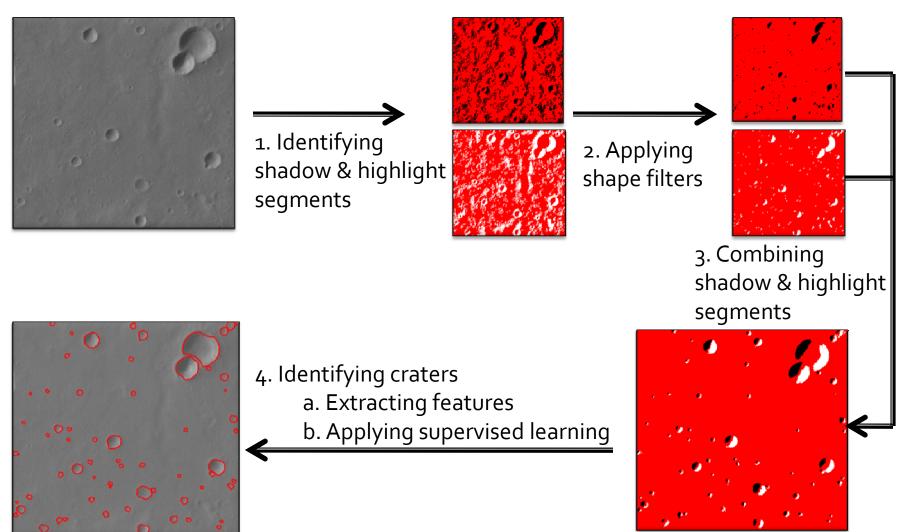
Key milestones

- 2009: Development of core crater detection algorithm and its variants
- 2009-2010: Testing on images for different regions on Mars
- 2009-2011: Development of a processing pipeline for large scale surveys of craters
- 2011-2012: Testing on high resolution images of the Moon, Mercury, and other planetary bodies.

Expected impact

 Making possible assembling global, "million crater" catalogs of sub-kilometer craters on Mars, Mercury, and the Moon to help understand past and present geological processes.

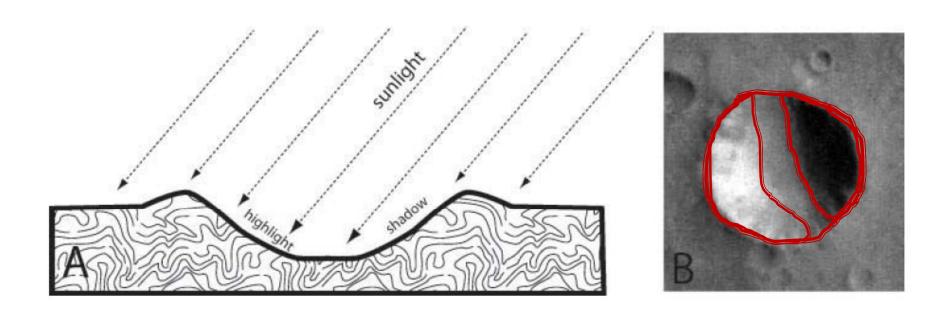
Our method



Enabling technical innovations

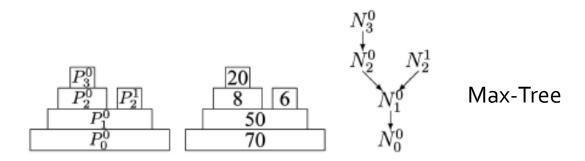
- Shape Filters
 - Template matching
 - KNN querying
- Feature Extraction
 - Mathematical morphology-based features
 - Haar-like texture-based features
- Supervised Learning
 - Ensemble method
 - Transfer learning

Key insight



Highlight & shadow segments

- Joint shape-size pattern spectra together with the Max-trees
 - Connected filtering, a mathematical morphology technique
 - Connected operators are used to compute pattern spectra using a Max-tree



Feature extraction I

- Mathematical morphology-based features
 - Seven Hu Moments
 - Circularity and Elongation
 - Distance, similarity, and area ratio between shadow and highlight segments

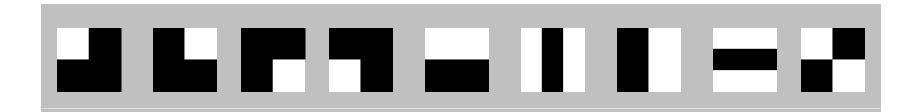
Invariant to translation, scale, and rotation

Feature extraction II

Haar-like features

(inspired by the face-detection method introduced in [Viola & Jones 2004])

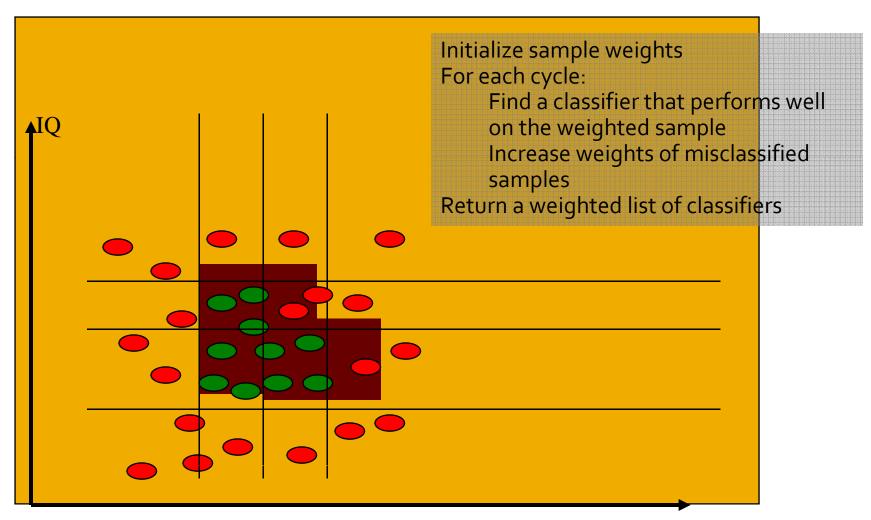
- Based on simple texture-based features
- Reminiscent of Haar basis functions



Supervised learning: ensemble methods

- AdaBoost agglomerates many weak classifiers into one strong classifier.
- The training error of the strong classifier approaches zero exponentially in the number of rounds [Schapire 1997].

AdaBoost - the idea



The animation is borrowed from Dr. Perkowski 's slides at Portland State Univ. St

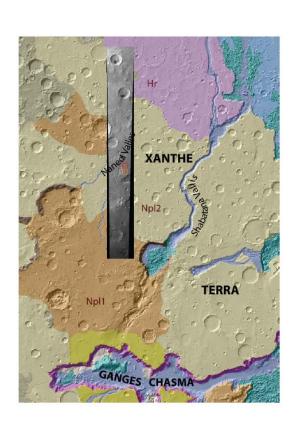
Shoe size

Learning classification functions

- Mathematical morphology-based features
 - AdaBoost + C4.5

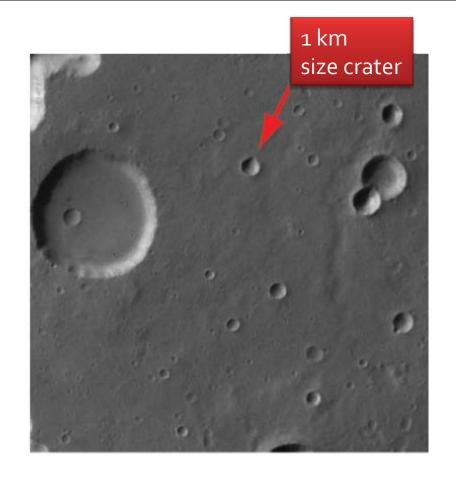
- Haar-like features
 - AdaBoost + Decision Stumps
 - Feature selection (out of thousands of features)
 - Building a strong classifier using many weak classifiers and simple features

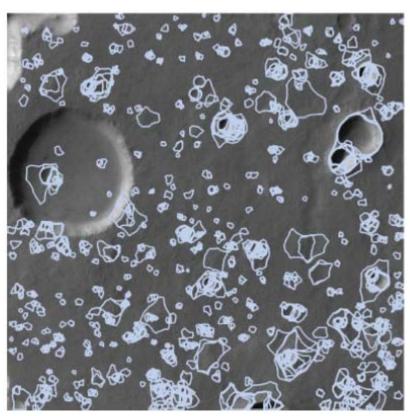
Geographical and geologic context of the data site



Test Site

Training site

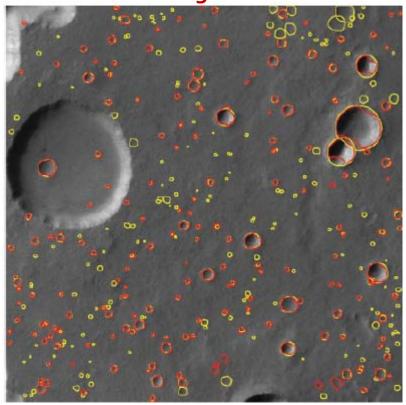




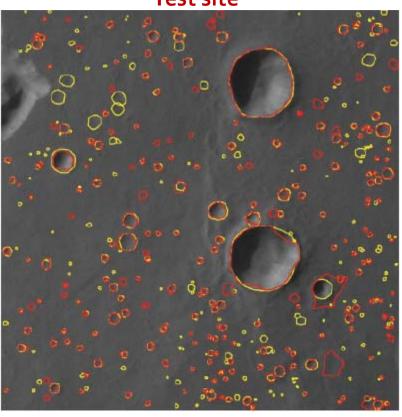
Crater Candidates

Experimental results using morphology-based features

Training site

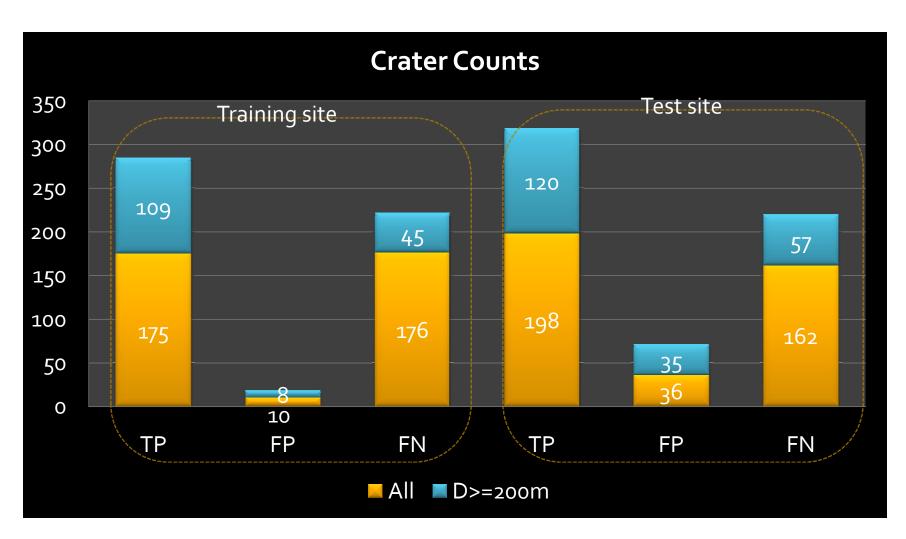


Test site



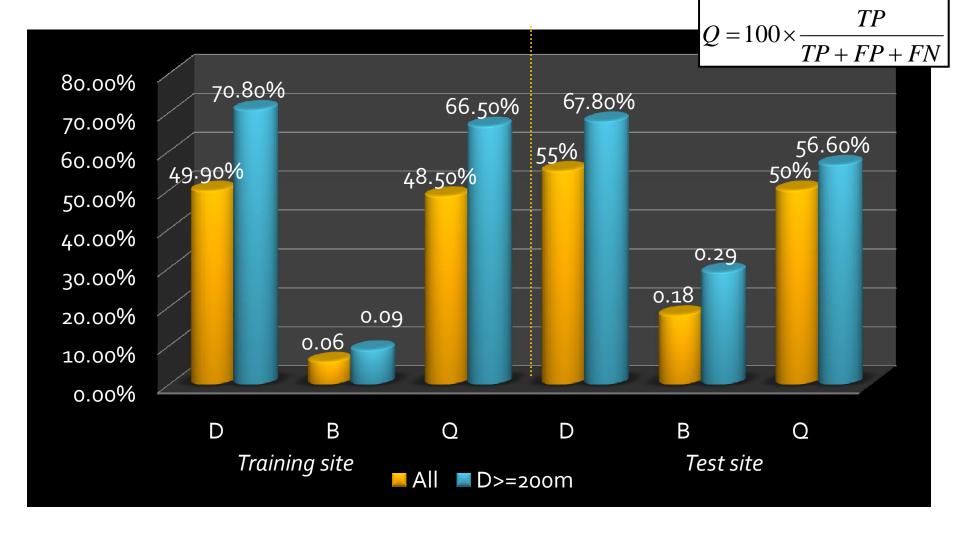
- "Craters" identified by our method
- True craters identified by an analyst

Evaluation

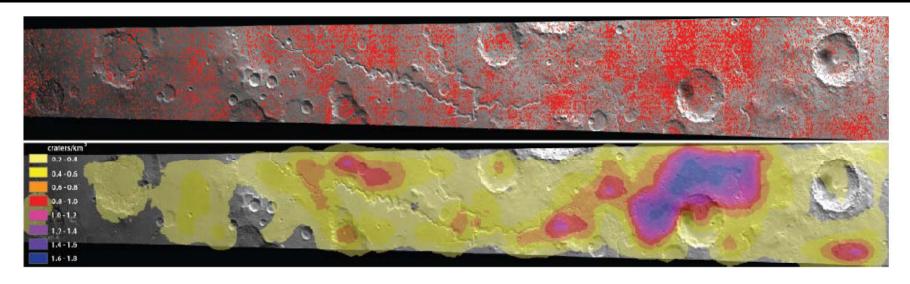


Quality of crater detection

$$D = 100 \times \frac{TP}{TP + FN}$$
$$B = \frac{FP}{TP}$$



Auto-survey of sub-km craters in the HRSC image hogo_ooo

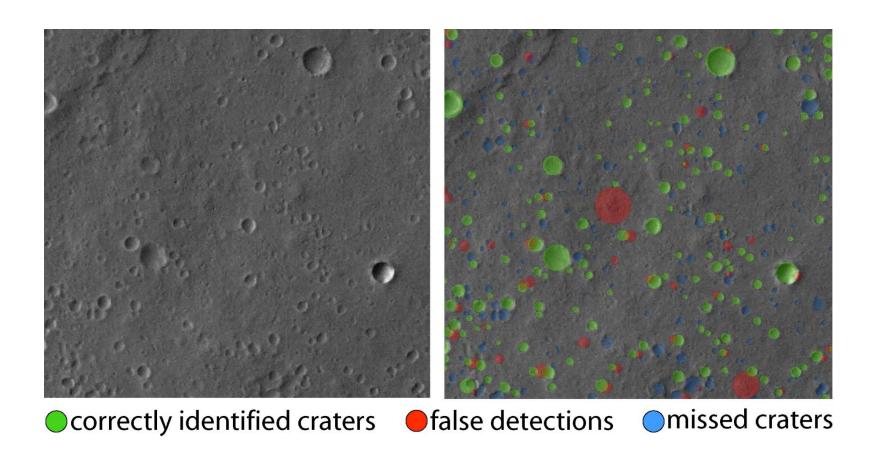


- Image size is 515 MB
- 8248 * 65448 = 539,815,104 pixels; 14 hours of computing time; 10,710 pixels per second
- Tessellated into 264 tiles; 1700 * 1700 pixels / tile
- 35,495 craters identified automatically

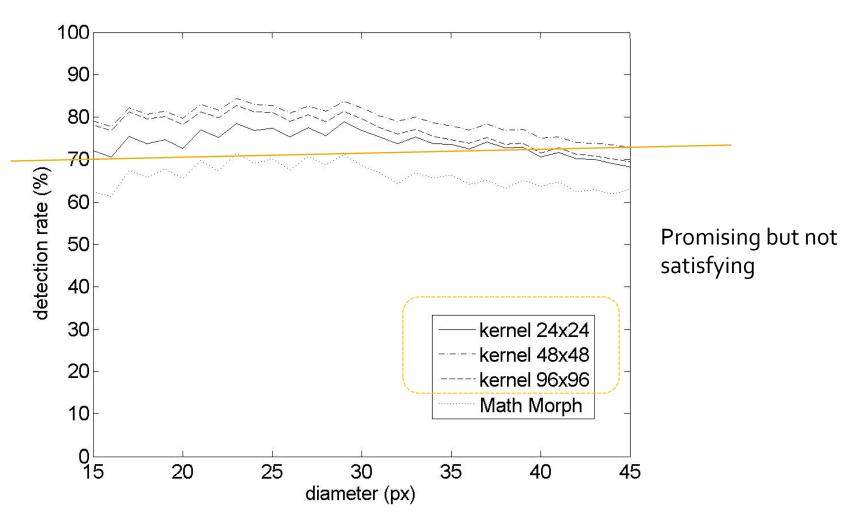
Exploration

- Shape Filters
 - Current: Template matching
 - Explore: KNN querying
- Feature Extraction
 - Current: Mathematical morphology-based features
 - Explore: Haar-like texture-based features
- Supervised Learning
 - Current: Ensemble method
 - Explore: Transfer learning

Experimental results using Haar-like features

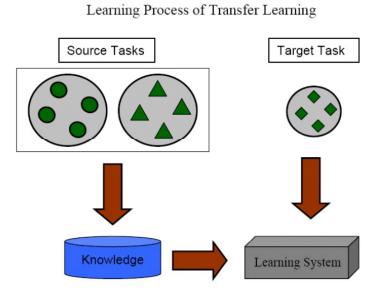


Evaluation



Transfer learning

 Incorrect Assumption: training and future data are in the same feature space and have the same distribution



Transfer learning techniques try to transfer the knowledge from previous tasks to a target task when the latter has different data distribution.

Summary

- Using scale and rotation-invariant shape filters to identify crescent-like regions in images
- Developing, evaluating, and assessing new crater detection algorithms
- Automatically surveying craters using the proposed pipeline on regional or global planetary scales

Thanks & Questions

