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Overview
Motivation: Physics-based simulations are widely used to model complex systems

+ high-fidelity representation of actual system behavior
-- cumbersome and computationally expensive     

Simulator Grading Script
+ 1

- 1
θ

Goal: Build a simplified predictive model of system behavior and 
use this model to understand which input parameters

{ }

use this model to understand which input parameters 
produce a desired output (+1) from the simulator. q(θ)

Really want a function:

{ }1,1:ˆ +−→Θq θ2

such that      agrees with q over most of domainq̂

θ1

Assumptions: the simulator is deterministic (and non-
chaotic) and the learner is only informed of a binary-valued 
outcome. 



Example: Asteroid Collisions
Currently working with asteroid 
collision simulator:

SPH + N-body gravity code

Various science questions can be 
studied with this simulator: 

Under what conditions is a collision 
“catastrophic”?“catastrophic”?

How are asteroid satellites (e.g., Ida-
Dactyl) generated?

How were particular asteroid families 
(e.g., Karin) formed?

But … Input space is 5-dimensional
Tgt body size (km)
Impactor velocity (km/s)Impactor velocity (km/s)
Impactor angle (degrees)
Impactor size (km)
Target composition (rubble/solid)

And … Each trial takes 1 CPU-day!

Movie courtesy B. Enke, D. Durda, SwRI.
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Grid sampling scales ~kd where k is 
number of steps along each dimension



Directed Exploration Approach

1. Learn a model from current 
knowledge

Current Knowledge

knowledge.

2. Decide which unlabeled point 
would be most valuable to 
label.

3. Get the label for the selected 
point from the oracle (bypoint from the oracle (by 
running the simulator/ 
grading script) and add that 
point and its label into 

Grey: Points with unknown labels
White: Points with known labels + 1

“current knowledge”.

4. Repeat until we have a good 
understanding of the oracle

Black: Points with known labels - 1
understanding of the oracle.



Two Main Steps
1 S i d L i L d l f t k l d1. Supervised Learning: Learn a model from current knowledge.

• Support Vector Machines (SVM)
• Kernel Density Estimation (KDE)

Ga ssian Process Classifier (GP)• Gaussian Process Classifier (GP)

2. Active Learning: Decide which unlabeled point would be 
most valuable to label nextmost valuable to label next.
• Passive – randomly select an unlabeled point.
• Most-Confused Point (MCP) – select the unlabeled point whose label 

is most uncertainis most uncertain.
• Most-Informative Point (MIP) – select the unlabeled point such that 

the expected information gain about the entire set of unlabeled points 
is maximized [Holub et al 2008]is maximized. [Holub et al, 2008]

• Meta-strategy – treat the base active learner’s valuation as expressing 
a preference over points; choose randomly while honoring the strength 
of the preference. (Similar to the epsilon-greedy approach used in RL p ( p g y pp
to balance exploration and exploitation.) [Burl et al, 2006]



Active LearningActive Learning
• Determine which new point(s) in input space, if 

labeled, would be most valuable.,

• Imagine discretized input space:
( )L(n) = set of labeled instances at end of trial n (red or green)

U(n) = set of unlabeled instances at end of trial n (black)

• Ideally choose θ(n+1) from U(n) such that the• Ideally, choose θ( ) from U( ) such that the 
classifier learned from 

L(n+1) = L(n) + (θ(n+1), q(θ(n+1)))

will bring q closer to q.



MCP: Choose points near 
current decision boundarycurrent decision boundary

AA

B

Figure from [Holub et al, 2008].

•MCP would choose Point A, but knowing the label of this point would 
not reveal much about the labels of the other unlabeled points.

•On the other hand, knowing the label of Point B would probably 
reveal the labels of the other nearby unlabeled points.



MIP: Most Informative Point

Probability of labels being +1 
(assuming yh = +1)

Current Knowledge
Grey: Points with unknown labels

White: Points with known +1 labels
Black: Points with known -1 labels

Expected Information Gain
I gain = H0 – (H+p+ + H-p-)

H(Y) = -Σ p(y i) log p(y i)
H(Y): Entropy/measure of uncertainty

( ) P b biliti f l b l i b i 1p(yi): Probabilities of label i being +1

Prediction given Current 
Knowledge

Probability of the labels 
being +1 (assuming yh = -1)



Synthetic Oracles
•Difficult to evaluate performance with real simulator since so slow and the 

1 2 3 4 5 6

p
true q() function is unknown => Use synthetic oracles initially.
•Added benefit: other researchers can try to replicate or improve upon results.

1

7 8 9 13

10 11 12



Results
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SVM−PAS
SVM−MCP
SVM−META•Active outperforms passive
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KDE−PAS
KDE−MCP
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GP−PAS
GP−MCP

•Active outperforms passive
•Exception: SVM-MCP

•KDE-MCP reaches 90% at round 100
•KDE-PAS doesn’t until after round 300

=> Speedup over 3x
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GP−MIP

=> Speedup over 3x



Initial Grid Evaluation (5D: 3 x 5 x 4 x 4 x 6)

> 100 days on a 16 cpu cluster



Conclusion
•Directed exploration shows promise for efficiently understanding theDirected exploration shows promise for efficiently understanding the 
behavior of complex systems modeled by numerical simulations.

Use simulator as an oracle to sequentially generate labeled training data.
Learn predictive model from currently available training data.
U ti l i t h hi h i l ti t i l t tUse active learning to choose which simulation trials to run next.
Get new labeled example(s) and repeat.

•Performance was systematically evaluated over synthetic oracles.y y y

•Active learning yielded significant improvement over passive learning.
•In some cases, 3x reduction in number of trials to reach 90% PD at PFA = 0.05

•Exploiting the time-savings
•Same final result can be obtained with fewer simulation trials.
•More simulation trials can be conducted in a given amount of time.
•Higher-fidelity (e.g., finer spatio-temporal resolution) simulation trials can be used.
•Concentrate trials at the region between interesting and non-interesting regions.

•Initial Set of Grid Runs and Refinement Completedp
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Future Work
•Experiments with Simulator in Loop
•Hill-climbing for point selection
•Kernel contraction•Kernel contraction

•Shrink kernel bandwidth parameter as more data is 
acquired

•Maximize throughput on computer cluster 
•choose new point while other runs in-progress

•Scalability of MIPy
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