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Real-Time Mining of Petascale Data Streams
• Distributed sensor networks – both ground-based andDistributed sensor networks both ground based and 

space-based – and major new scientific instruments (e.g., 
the LHC) are starting to generate Petascale data streams

• In addition to the huge data volumes, this brings new 
challenges along with the opportunities: detecting and 
recognizing interesting events/phenomena in real timerecognizing interesting events/phenomena in real time, 
and responding to them in some way

• Synoptic digital sky surveys are becoming the dominant y p g y y g
data provider in astronomy, leading towards the LSST
– A broad range of exciting astrophysics
– New challenges: reliable real time processing 

and event detection, event classification, 
directed follow-up…p

– Broader relevance, e.g., autonomous 
spacecraft networks



Scientific Measurement Cycle
Obtain some

measurements
Typically it looks like this:

Characteristic time scales
Analyze and

interpret the dataDecide on optimal
f ll

Characteristic time scales 
typically ~ a year
(or at best, days) te p et t e datafollow-up measurem.

Propose/implement

But what if theBut what if the
phenomena we study last/change on time scales of minutes/hours?
… and the data rates are measured in TB’s per day or higher?
… and the measurement, data, computation assets are distributed?
What is required is a system which is:

F ll t ti / b ti ith h i th l• Fully automatic/robotic, with no humans in the loop
• Draws on a number of important computational technologies



A Broad Variety of Phenomena

Flaring stars Novae, Cataclysmic Variables Supernovae

Gravitational Microlensing Accretion to SMBHsGamma-Ray Bursts



Examples of CRTS Transients
CSS090429:135125-075714 CSS090429:101546+033311 CSS090426:074240+544425CSS090429:135125-075714

Probable flare star
CSS090429:101546+033311

Probable dwarf nova
CSS090426:074240+544425
Blazar, 2EG J0744+5438 



The Palomar-Quest Event Factory
i h b litonight baselineDetect ~ 1 - 2 106 sources

per half-night scan
i h

R

Find ~ 103 apparent

Compare with 
the baseline sky

Find  10 apparent
transients (in the data)

Remove instrum. 
tif t

IIdentify ~ 2 - 4 102  real
transients (on the sky)

artifacts

transients (on the sky)
Remove 
asteroids

Identify ~ 1 - 10 possible
Astrophysical transients Classification and follow-up



Automated Detection of Artifacts

Automated classification and rejection of artifactsAutomated classification and rejection of artifacts 
masquerading as transient events in the PQ survey 

pipeline, using a Multi-Layer Perceptron ANN



The (Tsunami) 
Wave of the Future

• Now:  data streams of ~ 0.1 TB / 
night, ~ 10 - 102 transients / 
night (SDSS, PQ, various SN 
surveys, asteroid surveys)

• Forthcoming on a time scale ~ 1 - 5 years: ~ 1 TB / 
night, ~104 transients / night (PanSTARRS, 
Sk VISTA VST ) A major

y , y )

Skymapper, VISTA, VST…)
• Forthcoming in ~ 5 - 10 years: LSST, ~ 20 TB / 

night, ~ 105 - 106 transients / night

A major, 
qualitative 
change!

• Observational follow-up needs:
– Rapid photometric/positional monitoring

R id t }
Transient 
classification – Rapid spectroscopy

– Information/computation infrastructure } f
technologies 
are essential



Why Is This Hard?
1 Data are sparse and heterogeneous1. Data are sparse and heterogeneous

o Different measurements for different events, random(ish) 
sampling, variable data quality, archival coverage…p g q y g

o Feature vector methodology generally does not work
2. High completeness / low contamination requirement ☯
3. Must be done in real time and iterated dynamically
4. Follow-up resources are expensive and/or limited

o Only the most interesting/valuable events
o Decide on the optimal follow-up to resolve ambiguities

5 C ld b li it d ( t b d idth t )5. Could be resource-limited (compute power, bandwidth, etc.)
o E.g., space-based sensor systems, spacecraft networks

6 Huge and growing data volumes6. Huge and growing data volumes
7. Must be scalable to more and different data inputs



Towards Automated 
Event ClassificationEvent Classification contextual 

informationA necessity for large 
synoptic surveys

Event
parameters: Event

C ifi i
P(SN Ia) = …
P(SN II) =

synoptic surveys

p
m1(t), m2(t),…
α, δ, µ, …
image shape…

Classification
Engine

P(SN II) = …
P(AGN) = …
P(CV) = …
P(dM) =

Expert and ML generated priors

P(dM) = …
….

Classification 
probabilities
(evolving

colors lightcurves
etc.

(evolving, 
iterated)



Bayesian and Machine Learning Event 
ClassificationClassification

• Bayesian methods are more tolerant of heterogeneous or missing 
data; easy to add new event classes

• Machine learning approach (ANN and SVM, unsupervised 
classif.) will get better as the database of known events grows



Bayesian Networks (BN)

Bayesian methodology is desirable and attractive for this task, 
since it can deal with missing or heterogeneously sampled 
datadata. 

BN is a probabilistic graphical
d l t d th hmodel represented through

Directed acyclic graphs (DAG),
whose nodes representwhose nodes represent
variables, and the
missing arcs represent
Conditional
independence
assumptionsassumptions. 



BN: First Results

In the network shown here, colors 
and Galactic latitude have been 
used to generate priors Forused to generate priors.  For 
testing purposes four classes have 
been used: CVs,  Supernovae, 

Confusion matrix: rows are the true classes, 

, p ,
Blazars, and "Rest” 

Classes CV SN Blazars Rest 

f ,
columns are the predicted classes

CV 110 (0.80) 5 (0.04) 7 (0.05) 15 (0.11)

SN 22 (0.19) 64 (0.56) 12 (0.10) 17 (0.15)

Blazars 4 (0.13) 0 (0) 19 (0.64) 7 (0.23)

Rest 12 (0.39) 4 (0.13) 6 (0.19) 9 (0.29)



Gaussian Process Regression (GPR)

A generalization of a Gaussian probability, specified by a mean 
function and a positive definite covariance function. 

Given two flux measurement points for a new transient we 
can then ask which of the different models it fits, and what
stage of their period or phase. 
The more points you have, 
the better the estimatethe better the estimate.

Log marginal likelihood of a 
pair of points  corresponding 
to different parts of a 
lightcurve. 



GPR: Preliminary Results
A Mira variable star light curve 
fitted using GPR

Gi 4 d i t fGiven 4 random points from 
the light curve of a Mira 
variable, the probability of it p y
being a Mira variable is 
higher than, say, a SN 



Fusion Module
Colors and light curve information can be combined in oneColors and light curve information can be combined in one 
network.  This "fusion module” combines the probabilistic 
results from each constituent classifier.

class



Automating the Optimal Follow-Up
Wh f f ll d h h i l di i iWhat type of follow-up data has the greatest potential to discriminate 
among the competing models (event classes)?
Request follow upRequest follow-up 
observations from 
the optimal 
available facilityavailable facility



Summary
• Real time mining of massive data streams• Real-time mining of massive data streams 

offers great opportunities and challenges
– Synoptic sky surveys and real-time y p y y

astronomy are an excellent testbed
• We are making progress on real-time, 

t t d it t d t l ifi tiautomated, iterated event classification
– Not your grandma’s classification problem!
– Sparse and heterogeneous data real timeSparse and heterogeneous data, real time, 

dynamically iterated, resource-limited…
• Next: an automated decision making for 

i l ll b ioptimal follow-up observations
• A broader relevance, e.g.:

A t ft t k– Autonomous spacecraft networks
– Environmental sensor networks; etc.


