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Paradox of False PositiveParadox of False Positive

I i   di  th t h   l  Imagine a disease that has a prevalence 
of 1 in a mllion people. I invent a test that 
is 99% accurate  I am obviously excited  is 99% accurate. I am obviously excited. 
But, when applied to a million, it returns 
positive for 10,000 (remember, it is p , ( ,
99%accurate). Priors tell us otherwise. 
There is one in a million infected --- 99% 
accurate test is inaccurate 9,999 times 
out of 10,0000.

Nitesh Chawla, NASA CIDU, 
October 15, 2009



“Although the rare events’ consequences can 
be enormous, such events are very difficult y
to predict based on past data....”

“The available data are often scarce, because ,
such events are necessarily unusual, and 
careful and sophisticated modeling is needed 
to extract the fullest information from the 
data, and to provide realistic forecasts and 
associated measures of uncertainty.”

The statistic of rare eventThe statistic of rare event
Nitesh Chawla, NASA CIDU, 
October 15, 2009
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That needle in the HaystackThat needle in the HaystackThat needle in the HaystackThat needle in the Haystack
Nitesh Chawla, NASA CIDU, 
October 15, 2009



The one in a 100, one in a 1000, one in The one in a 100, one in a 1000, one in The one in a 100, one in a 1000, one in The one in a 100, one in a 1000, one in 
100,000, and one in a million event100,000, and one in a million event

F d d t ti◦ Fraud detection
◦ Disease prediction
◦ Intrusion detectionIntrusion detection
◦ Text categorization
◦ Bioinformatics
◦ Direct marketing
◦ Terrorism
◦ Physics simulations◦ Physics simulations
◦ Climate

Nitesh Chawla, NASA CIDU, 
October 15, 2009
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Learning from Imbalanced Data Learning from Imbalanced Data 
(Rare Event)(Rare Event)

Data set is considered 
imbalanced, if the classes 
are unequally distributed

Class of interest (minority 
class) is often much 
infrequent or rarer

But, the cost of error on the 
minority class has a bigger 
bitebite

IEEE ICDM noted “Dealing with Non-static, Unbalanced and Cost-sensitive Data” 
among the 10 Challenging Problems in Data Mining Research

Nitesh Chawla, NASA CIDU, 
October 15, 2009
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Cost and BenefitsCost and Benefits

A t l A t l
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Benefit of NonBenefit of Non--DefaultDefault
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Liu and Chawla, “Benefit Scoring for Pricing,” KDD 2007
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SolutionSolution
Sampling MethodsSampling Methods
Moving Decision Threshold
Classifiers’ Objective FunctionsClassifiers  Objective Functions

Nitesh Chawla, NASA CIDU, 
October 15, 2009



UndersamplingUndersamplingUndersamplingUndersampling
Randomly remove majority class examples

Risk of losing potentially important majority class examples, 
that help establish the discriminating power

Nitesh Chawla, NASA CIDU, 
October 15, 2009



OversamplingOversamplingOversamplingOversampling
Replicate the minority class examples to increase 
their relevancetheir relevance

But no new information is being added. Hurts the 
generalization capacity. 

Nitesh Chawla, NASA CIDU, 
October 15, 2009



Instead of replicating, let us Instead of replicating, let us Instead of replicating, let us Instead of replicating, let us 
invent some new instancesinvent some new instances

SMOTE: Synthetic Minority Over sampling SMOTE: Synthetic Minority Over-sampling 
Technique

Nitesh Chawla, NASA CIDU, 
October 15, 2009



Conclusions from Sampling Work:Co us o s o Sa p g o
◦ When faced with the problem of class 
imbalance, SMOTE and undersampling, is 
generally the preferred combination  generally the preferred combination. 
◦ Using a wrapper can effectively discover the 
potentially optimally amounts of sampling. p y p y p g
◦ Effectively countering imbalance counters 
misclassification costs issues

Chawla, et al., “SMOTE: Synthetic Minority Oversampling Technique,  Journal of Artificial 
Intelligence Research, 

Cieslak, Chawla, “Start Globally, Optimize Locally, and Predict Globally: Improving Performance 
on Imbalanced Data,” IEEE International Conference on Data Mining (ICDM), 2007

Chawla et al., “Automatically countering class imbalance and its  empirical relationship to cost,  
Data Mining and Knowledge Discovery Journal, 2009

Nitesh Chawla, NASA CIDU, 
October 15, 2009
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Sampling approaches can be Sa p g app oa s a b
computationally expensive
Outstanding Question: How to improve 
the baseline classifier performance?

Specifically, making decision trees skew 
insensitive

Beyond SamplingBeyond SamplingBeyond SamplingBeyond Sampling
Nitesh Chawla, NASA CIDU, 
October 15, 2009



Traditional decision tree splitting criteria ad o a d s o sp g a
are typically class skew sensitive
◦ Almost always need some sampling or 

h h ldthreshold moving
◦ Ensemble methods can potentially mitigate but 
can be limitedcan be limited

Looking at Decision TreesLooking at Decision TreesLooking at Decision TreesLooking at Decision Trees
Nitesh Chawla, NASA CIDU, 
October 15, 2009



Decision TreesDecision Trees
A popular choice when combined with A popular choice when combined with 
sampling or moving threshold to counter 
the problem of class imbalancep
The leaf frequencies converted to 
probability estimates (Laplace or m-
estimate smoothing applied, typically)
◦ Suggested use is as a PET – Probability 
Estimation Trees (unpruned  no-collapse  and Estimation Trees (unpruned, no-collapse, and 
Laplace)

Nitesh Chawla, NASA CIDU, 
October 15, 2009



Entropy (Information Gain) as Entropy (Information Gain) as 
an impurityan impurity

N = number of samples
(Q,W ) classes of interest

Ni = number of samples in class i
N S = number of samples in           L /R

N L

∑ N L N R

∑ N R

split
Ni

S = number of samples in class      isi L /R

E = −
Ni

N L log2
i∈(W ,Q )
∑ Ni

N L + −
Ni

N R log2
i∈(W ,Q )
∑ Ni

N R
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Proposing Hellinger distance for Proposing Hellinger distance for 
decision tree splitting criteriondecision tree splitting criteriondecision tree splitting criteriondecision tree splitting criterion

◦Hellinger Distance
distance between probability measures 
i d d t f th  d i ti  tindependent of the dominating parameters

Nitesh Chawla, NASA CIDU, 
October 15, 2009



Properties of Hellinger DistanceProperties of Hellinger DistanceProperties of Hellinger DistanceProperties of Hellinger Distance
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Measures countable space Φ
Ranges from 0 to √2
Symmetric: d (P Q)=d (Q P)Symmetric: dH(P,Q)=dH (Q,P)
Lower bounds KL divergence

Nitesh Chawla, NASA CIDU, October 15, 
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Inf  Gain vs  Inf  Gain vs  HellingerHellinger distancedistanceInf. Gain vs. Inf. Gain vs. HellingerHellinger distancedistance
(Q,W ) classes of interest

NN
Ni = number of samples in class i
N S = number of samples in           RL /N = number of samples in           

split

RL /
Ni

S = number of samples in class      isi L /R

E = −
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N L log2
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Hellinger as decision tree splitting Hellinger as decision tree splitting Hellinger as decision tree splitting Hellinger as decision tree splitting 
criterioncriterion
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Comparing Value SurfacesComparing Value Surfaces

Hellinger Information Gain
P(x|+) P(x|-) P(x|+) P(x|-)

Class ratio +:- = 1:1

g
Distance

Information Gain

Class ratio +:  1:1
Nitesh Chawla, NASA CIDU, 
October 15, 2009



Comparing Value SurfacesComparing Value Surfaces

Class ratio +:- = 1:100

Information GainHellinger 
Distance

Class ratio +:  1:100
Nitesh Chawla, NASA CIDU, 
October 15, 2009



19 data sets from a number of domains 9 da a s s o a u b o do a s
and applications
◦ Detecting oil spills, mammography, forest cover 

d d b f lltype, drug discovery, bioinformatics, satellite 
images, etc. 
◦ And public repository (UCI)And public repository (UCI)
5x2 fold cross-validation
AUC as evaluation metric
Friedman test to statistically evaluate the 
performance of classifier

Empirical EvaluationEmpirical EvaluationEmpirical EvaluationEmpirical Evaluation
Nitesh Chawla, NASA CIDU, 
October 15, 2009



HDDT R ltHDDT R ltHDDT ResultsHDDT Results
Base Sampling

C4.5 Gini (CART) HDDT C4.5 Gini (CART) HDDT

Avg Rank 5.61 7.42 2.50 4.00 6.18 3.79

Friedman 

95% 

√ √ √conf √ √ -- √

Nitesh Chawla, NASA CIDU, October 15, 
2009



B t M  C  B  B ttB t M  C  B  B ttBut More Can Be BetterBut More Can Be Better
One sage sees all the data

Traditional: Use 100% of Traditional: Use 100% of 
training data to build a 
sage.

Many experts see 2/3’s of the dataEnsemble: Randomize 
training data to build 
many voted experts many voted experts 
(“bagging”).

Experts outperform the sage!Boosting: Emphasize 
difficult instances in 
future iterations

Nitesh Chawla, NASA CIDU, 
October 15, 2009



Imbalanced DataImbalanced Data KeyImbalanced DataImbalanced Data Key
T: Single Tree
B: Bagging
BT: Boosting

38 Datasets from multiple 
d i d li ti

Hellinger Distance (HD) AUC Ranks

BT: Boostingdomains and applications. 

g ( )

Nitesh Chawla, NASA CIDU, October 15, 
2009



Imbalanced DataImbalanced Data
Which bagging wins?Which bagging wins?

HD+B IG+B
Dataset Wins 16 4

Rank Sum 163 27
Wilcoxon Winner at 95% √

C fi d h th i “H lli di t ith b i t ti ti ll i ifi tlConfirmed hypothesis: “Hellinger distance with bagging statistically significantly 
performs best on unbalanced datasets.”

Nitesh Chawla, NASA CIDU, 
October 15, 2009



C l i  1 1C l i  1 1Conclusions v1.1Conclusions v1.1

If you are learning on imbalanced data, use 
bagged Hellinger Distance Decision Trees.

Nitesh Chawla, NASA CIDU, 
October 15, 2009



Balanced DataBalanced Data

Determined Accuracy for each method on 29 balanced datasets. 

HD+Bt HD+B IG+Bt IG+B
Average Rank 2.16 3.03 2.12 3.03

90% Confidence
95% Confidence
99% Confidence

Confirmed hypothesis: “Hellinger distance with bagging does not perform 
statistically significantly worse on balanced datasets.”

Nitesh Chawla, NASA CIDU, 
October 15, 2009



C l iC l iConclusionsConclusions

If you are learning on imbalanced data, use 
bagged Hellinger Distance Decision Trees.

If you are learning on balanced data, you may 
also use bagged Hellinger Distance Decision also use bagged Hellinger Distance Decision 
Trees.

Cieslak and Chawla  “Learning Hellinger Distance Decision Trees for Imbalanced Data ” Cieslak and Chawla, Learning Hellinger Distance Decision Trees for Imbalanced Data,  
European Conference on Machine Learning, 2008

Cieslak  and Chawla, “Learning robust and skew insensitive decision trees,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence (PAMI), UNDER REVIEW.

Nitesh Chawla, NASA CIDU, 
October 15, 2009



But, what can I really say about But, what can I really say about But, what can I really say about But, what can I really say about 
the performance of my favorite the performance of my favorite 
model. model. model. model. 

Optimal decisions, while they can maximize 
performance in static environments, can result in 
fragility for complex  uncertain  and rapidly fragility for complex, uncertain, and rapidly 
changing problems.

Nitesh Chawla, NASA CIDU, 
October 15, 2009



Manage the Tipping Point: Prepare for  Manage the Tipping Point: Prepare for, 

React to, Manage the Predictive 

Uncertainties

Grand Challenge ProblemGrand Challenge ProblemGrand Challenge ProblemGrand Challenge Problem
Nitesh Chawla, NASA CIDU, 
October 15, 2009



Tipping Point Grand Tipping Point Grand Tipping Point Grand Tipping Point Grand 
ChallengeChallenge

C   ti i t  th  i t f t ti l Can we anticipate the impact of potential 
changes in distribution?
Can we gauge the impact of those to Can we gauge the impact of those to 
different performance estimates?
Can we appropriately weigh and select Can we appropriately weigh and select 
models for use?

Nitesh Chawla, NASA CIDU, 
October 15, 2009



First, let us consider some common First, let us consider some common 
t  f d l d l tt  f d l d l tsteps of model developmentsteps of model development
Development/Training 
Data Develop Model(s)Data Develop Model(s)

Validation Data

Select Model
Deploy

Nitesh Chawla, NASA CIDU, 
October 15, 2009



L t  h  thi  f kL t  h  thi  f kLet us change this framework.Let us change this framework.
Development/Training 
Data Develop Model(s)Data Develop Model(s)

Inject 
Scenarios

Validation Data

Scenarios

Monitor

Select Model
Deploy

Nitesh Chawla, NASA CIDU, 
October 15, 2009



Detail is in the Design of Detail is in the Design of 
ExperimentationExperimentation

Model Monitor Evaluating and Monitoring 
Models
Y   d l d f  You can download from 
http://www.nd.edu/~dial

Cieslak, Chawla, “Detecting Fractures in Classifier Performance,” IEEE International 
Conference on Data Mining (ICDM), 2007

Cieslak, Chawla, “A Framework for Monitoring Classifiers' Performance: When and Why 
Failure Occurs?,” Knowledge and Information Systems Journal, 2008

Raeder, Chawla, “Model Monitor: Evaluating, Comparing and Monitoring Models,” Journal 
of Machine Learning Research  2009

Nitesh Chawla, NASA CIDU, 
October 15, 2009

of Machine Learning Research, 2009



Let neither measurement without theoryy
Nor theory without measurement dominate
Your mind but rather contemplate
A t  i t ti  b t  th  tA two-way interaction between the two
Which will your thought processes stimulate
To attain syntheses beyond a rational To attain syntheses beyond a rational 

expectation!
Contributed by A. Zellner. 

SummarySummarySummarySummary
Nitesh Chawla, NASA CIDU, 
October 15, 2009



Thank youThank you

Questions?Questions?
For papers
◦ http://www nd edu/~nchawlahttp://www.nd.edu/~nchawla
◦ nchawla@nd.edu

Nitesh Chawla, NASA CIDU, 
October 15, 2009


