Structural Model Status

July 27, 2011

Mass Debugging

- Mass provided by Boucke did not match Nastran FEM... why?
- The physical beam in Nastran is defined by shear centers.
- Nastran requires expects that Center of mass, bending center and shear center all lie in a plane that is perpendicular to the elemental beam axis connecting shear centers.
- First attempt was just modify the elemental densities by the ratio of total mass.

Eigenvalues and Weights for Beam FEM model

Description	Boucke's	ccs_o1_k_ns m1_NneM_nN M	ccs_o1_k_ns m1_nNM_mod rho	ccs_o3_k_nsm1
		grids of beams original, offsets to shear center		grids of beams = center of mass, no account for Bending, shear center offsets
		NSM included	NSM included in rho, modified density	NSM included in
1	25.33879547	26.39016	25.95115	25.86045
2	78.63642299	83,73869	82.34042	81.72039
3		118.8076	117.3857	117.5062
4		171.3843	168.1035	167.363
5		263.497	260.5431	259.2949
6		274.9971	272.3728	271.8174
7		280.5421	274.8908	276.339
8		387.3111	384.7303	378.7149
9		441.2884	440.4103	437.6894
10		506.6287	502.7613	499.8026
MASS	342.62	339.4723	342.6284	342.6284
XCG		0.2810102	0.2793829	0.2805913
YCG		-0.3737949	-0.3690779	-0.3699242

Suggestions made

- Look at one element finite element model, look at displacements with a load at the end to check out stiffness formulation of Nastran and Boucke
- Boucke doesn't like the idea recommends we create a longer beam with constant properties with multiple elements. He is planning to generate the model and I will create a Nastran model from the data he provides
- Other suggestions from Castro follow next

SUGGESTIONS FOR CHECK OUT

- Castro updated the Nastran one element model to try to more accurately define the bending and mass grids.
- He somewhat succeeded but it's still not perfect. However, I think we are very close now so this should be close enough. Comparing these grids to your original model shows differences on the order of -4 so you were already very close.

Last week Alexander was suggesting not necessarily comparing one element, but comparing a uniform beam of maybe 20 elements. That would be fine. However we compare, in the end, I think we should do the following until we understand exactly which terms in Nastran are causing the differences:

- 1) Normal modes of beam with no shear center, bending or mass offsets. Check total mass, frequencies and mode shapes
- 2) Normal modes of beam with shear center offset. Bending and mass axes located at shear center
- 3) Normal modes of beam with shear center offset. Mass axis further offset from shear center. No offset for bending axis
- 4) Normal modes of beam with shear center offset. Bending axis further offset from shear center. No offset for mass axis
- 5) Normal modes of beam with shear center offset. Bending and Mass axes further offset from shear center.

All the above can be repeated with linear statics and grav loads.

•

Also, the test model should have the nodes aligned on the X axis of the default global coordinate system so that the CBEAM element coordinate system axes are parallel to the global coordinate system.

By the way, I do not have a meeting notice for tomorrow. Please forward if possible. I will try to attend if I don't have a conflict.

SOLID ELEMENT MODELS

 Boucke working on getting cable weights and locations to add to Hex and TET models – status??