Precific Workshop

Lessons learned in the selection and development of test cases for the Aeroelastic Prediction Workshop: **Rectangular Supercritical Wing**

Jennifer Heeg, Pawel Chwalowski, Carol Wieseman, Jennifer Florance, and David Schuster

What did we learn from RSW?

- Wall presence effects
- FRF main contributors
- Relationships between steady-state and oscillatory solutions
- Flow physics of supercritical airfoils

Too many things were varied

Aeroelastic Computational Benchmarking

 Technical Challenge: Assess state-of-the-art methods & tools for the prediction and assessment of aeroelastic phenomena

Fundamental hindrances to this challenge

- No comprehensive aeroelastic benchmarking validation standard exists
- No sustained, successful effort to coordinate validation efforts

Approach

- Perform comparative computational studies on selected test cases
- Identify errors & uncertainties in computational aeroelastic methods
- Identify gaps in existing aeroelastic databases
- Provide roadmap of path forward

Contents

- RSW Model
- Preliminary Modeling Study
- Workshop Analyses
- Summary & Lessons Learned

Rectangular Supercritical Wing (RSW)

- Simple, rectangular wing
- Structure treated as rigid
- Static and forced oscillation pitching motion

Some deficiencies:

- Splitter plate deficiencies
- No time histories

RSW Features

6

RSW Unsteady Pressure Transducer Layout

Rectangular Supercritical Wing Analysis Conditions

M=0.825 Re_c=4.0 million Test medium: R-12

> a) Steady Cases i. $\alpha = 2^{\circ}$ ii. $\alpha = 4^{\circ}$ b) Dynamic Cases: $\alpha = 2^{\circ}, \theta = 1^{\circ}$ i. f = 10 Hzii. f = 20 Hz

Contents

RSW Model

- Preliminary Modeling Study
- Workshop Analyses
- Summary & Lessons Learned

Original computational model recommendation

Original computational model recommendation

Model B: Add Viscous Splitter Plate

Splitter plate region modeled as viscous surface Remainder of wall modeled as symmetry plane Wing Span = 48" Upstream BC = 100c_{ref}

Model C: Entire Wall Viscous

Entire wall modeled as viscous surface Wing Span = 48" Upstream BC = 100c_{ref}

Model D: Wing Extruded to tunnel wall

Entire wall modeled as viscous surface Wing extruded to physical location of wall, Wing Span = 55" Upstream BC = 100c_{ref}

Model E: Remove viscous modeling of wall

Entire wall modeled as symmetry boundary condition Wing Span = 55" Upstream BC = 100c_{ref}

Model F: Viscous wall reincorporated; Upstream Boundary Location Reduced

Entire wall modeled as viscous surface Wing Span = 55" Upstream BC = 50c_{ref}

Tunnel Boundary Layer Thickness Calculations

CFL3D Analysis, Adjusted upstream boundary location

Final computational model recommendation

- Reduce computational domain from 100 chords ahead of wing to 42 chords ahead of wing
- Viscous model of wall
- No splitter plate
- Extended wing span, 55"

Contents

- RSW Model
- Preliminary Modeling Study
- Workshop Analyses
- Summary & Lessons Learned

RSW Analysis Teams

Affiliation	Analysis Team Members	AePW Designation
RUAG Aviation	Alain Gehri,	А
	Daniel Steiling	
NASA	Pawel Chwalowski	В
NASA	David Schuster,	С
	Andrew Prosser	
ANSYS Germany GMBH	Thorsten Hansen,	D
	Angela Lestari	
University of Wyoming	Dimitri Mavriplis,	Ε
	Mike Long,	
	Zhi Yang,	
	Jay Sitaraman	
University of Liverpool	Sebastian Timme	F

RSW flow solutions

All RSW Analysis teams used Reynolds'-averaged Navier Stokes flow solvers.

					Oscillatory
Analysis	Software	Turbulence	Flux	Flux	Solution
Team	Name	Model*	Construction	Limiter	Method
А	NSMB	SA	Unknown	None	Elastic+TFI
В	FUN3D	SA	Roe	Venkat	Elastic
С	CFL3D	SA	Roe	None	Modal+TFI
D	ANSYS CFX	SST	2nd Order Upwind/	Barth &	
			Rhie Chow	Jesperson	Diffusion Equation
E	NSU3D	SA	Matrix Artificial	None	
			Dissipation		Full Grid Motion
F	PMBv1.5	SA	Osher	MUSCL+	
				van Albada	Full Grid Motion

* Spalart-Allmaras (SA), Shear Stress Transport (SST)

Comparison Data Matrix

		REQUIRED CALCULATIONS					
	CASE	GRID CONVERGENCE STUDIES	TIME CONVERGENCE STUDIES	COMPARISON DATA			
	Steady-Rigid	C _L , C _D , C _M		 Mean C_p vs. x/c Means of C₁, C₂, C₄ 			
	Forced Oscillation Magnitude and Phase of CL, CD, CM at excitation frequency			 Magnitude and Phase of C_p vs. x/c at span stations corresponding to transducer locations 			
		Phase of C_L , C_D , C_M vs. dt at excitation frequency	 Magnitude and Phase of C_L, C_D, C_M at excitation frequency Time histories of C_p's at a selected span station for two upper- and two lower- surface transducer locations 				

Lift Coefficient

- Different areas of integration
- Different normalization constants
- Different modeled wingspans
- Different tunnel wall treatments
- Different wingtip models
- Different grids
- Solution variables

Example data set

Shock Characterization- Steady State

Steady-State Shock Strength

Comparison Data Matrix

	REQUIRED CALCULATIONS					
CASE	GRID CONVERGENCE STUDIES	TIME CONVERGENCE STUDIES	COMPARISON DATA			
Steady-Rigid	C _L , C _D , C _M		 Mean C_p vs. x/c Means of C_L, C_D, C_M 			
	Magnitude and Phase of CL, CD, CM at excitation frequency	Magnitude and Phase of C_L , C_D , C_M vs. dt at excitation frequency	 Magnitude and Phase of C_p vs. x/c at span stations corresponding to transducer locations 			
Forced Oscillation			• Magnitude and Phase of C_L , C_D , C_M at excitation frequency			
			 Time histories of C_p's at a selected span station for two upper- and two lower- surface transducer locations 			

Comparison Data Matrix

		REQUIRED CALCULATIONS						
	CASE	GRID CONVERGENCE STUDIES	TIME CONVERGENCE STUDIES		COMPARISON DATA			
	Steady-Rigid	C _L , C _D , C _M		•	Mean C_p vs. x/c Means of C_L , C_D , C_M			
				•	 Magnitude and Phase of C_p vs. x/c at span stations corresponding to transducer locations 			
	Forced	Phase of CL,	Phase of C_L ,	•	Magnitude and Phase of C_L ,			
	Dominant	t character	istic:		(
Upper surface oscillatory shock ories of C _p 's at a span station for								
					upper- and two lower- surface transducer locations			

Shock Characterization- Forced Oscillation

Shock strength

Shock Locations

Comparison Data Matrix

		REQUIRED CALCULATIONS					
	CASE	GRID CONVERGENCE STUDIES	TIME CONVERGENCE STUDIES	COMPARISON DATA			
オンドンドイ	Steady-Rigid	C _L , C _D , C _M		 Mean C_p vs. x/c Means of C_L, C_D, C_M 			
	Forced Oscillation Magnitude and Phase of CL, CD, CM at excitation frequency	Magnitude and Phase of C_L , C_D , C_M vs. dt at excitation	 Magnitude and Phase of C_p vs. x/c at span stations corresponding to transducer locations Magnitude and Phase of C_L, C_D, C_M at excitation frequency 				
		inequency	nequency	 Time histories of C_p's at a selected span station for two upper- and two lower- surface transducer locations 			

Comparison Data Matrix

Time history comparisons among analyses Chord location near/at the shock, 10 Hz oscillation

Time, sec

What did we learn from RSW?

- Wall presence effects:
 - The RSW model was too close to the wall
 - The wall effects need to be accounted for
- FRF main contributor- Upper surface oscillatory shock
 - Largest variation among computational results
 - Largest disagreements with experimental data
 - Strength and range of motion change with span station and forcing frequency
- Relationships between steady-state and oscillatory solutions
 - Frequency response functions
 - Nonlinear time history in shock region
- Flow physics of the RSW supercritical airfoil
 - Shock-induced local separation
 - Attached trailing edge flow
 - Lower surface invariance
- CFD solutions vary widely, even for steady state solution; The integrated loads are not an accurate representation of the CFD state of the art

RSW Summary Points

- Assessment of the state of the art in computational tools?
 - Indicates which aspects of the results are most important and which are the most difficult to predict
 - Did not provide a data set for assessing significance of analysis factors (e.g. turbulence model, grid refinement)

Influences on the path forward

- Use this information and these analysis processes as we proceed forward
 - In analyzing the results for BSCW & HIRENASD
 - In our understanding of the aeroelastic behavior

Thank you

RSW Grids

Recommended Gridding

- No splitter plate
- Viscous tunnel wall, extending to 42 wing chords ahead of wing leading edge
- Wing span = 55 inches

Analysis	Grid	Element	Solver	Number of Nodes or Cells, (millions)			Wing Tip	Wing Span,
Team	Type*	Type [†]	Type‡	Coarse	Medium	Fine	Model [§]	inches
Α	Str	Hex	Cell	3.38	9.91	27.0	Revoln	55
В	Unstr	Mix	Node	2.88	7.07	18.23	Revoln	55
С	Str	Hex	Cell	0.18	1.42	11.18	Scarf	55
D	Str	Hex	Node	1.91	5.89	15.42	Revoln	48 [¶]
Е	Unstr	Mix	Node	2.87	7.07	18.28	Revoln	55
F	SMB	Hex	Cell	2.32	6.60	18.63	Revoln	55

* Structured (Str), Unstructured (Unstr), Structured MultiBlock (SMB)

- [†] Hexagonal (Hex), Mixed Hexagonal & Tetrahedral (Mix)
- [‡] Cell-centered (Cell), Node-centered (Node)
- § Model geometry surface of revolution (Revoln), Scarfed tip (Scarf)
- [¶] Modeled only from splitter plate outboard to wing tip

Review of the RSW Grid Development and Analysis Research by the AePW OC members: Story line

- Wall and splitter plate modeling investigated using <u>steady</u> analysis
 - Splitter plate models
 - None
 - Symmetry boundary condition
 - Viscous
 - Wall models
 - Symmetry boundary condition
 - Viscous
 - Wing size
 - Geometric model size
 - · Extended wing span to duplicate placement within the test section
- Experimental data utilized to assess computational results:
 - Boundary layer thickness at model location
 - Steady pressure distributions
- Resulting recommended model
 - Reduce computational domain from 100 chords ahead of wing to 42 chords ahead of wing
 - Viscous model of wall
 - No splitter plate
 - Extended wing span

Wind Tunnel Wall Boundary Layer Comparisons

