Precision Workshop

Overview & Lessons Learned from the Aeroelastic Prediction Workshop

Jennifer Heeg, Pawel Chwalowski, David Schuster, Mats Dalenbring, Adam Jirasek, Paul Taylor, Dimitri Mavriplis, Alexander Boucke, Josef Ballmann and Marilyn Smith

AePW Website: <u>https://c3.nasa.gov/dashlink/projects/47/</u>

Advances in Nonlinear Unsteady Aerodynamic Flows Symposium US National Congress of Computational Mechanics Raleigh, NC , July 22-25

Outline

- Workshop overview
- Overview of lessons learned
- Lessons learned in separated flow simulation & experiments
- Path forward discussion

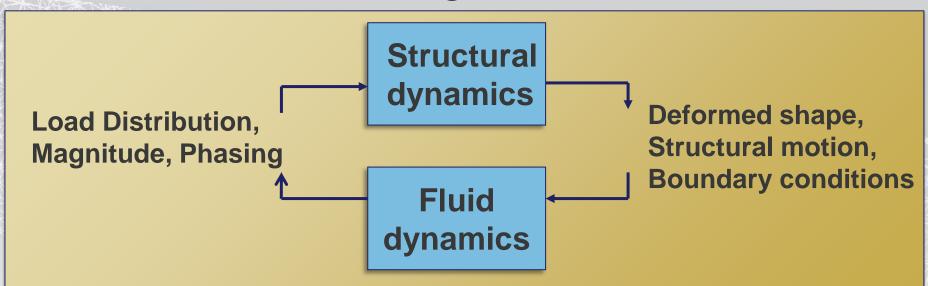
Outline

- Workshop overview
 - Groundwork
 - Configuration discussion
- Overview of lessons learned
- Lessons learned in separated flow simulation & experiments
- Path forward discussion

Aeroelastic Computational Benchmarking

• Technical Challenge:

Assess state-of-the-art methods & tools for the prediction and assessment of aeroelastic phenomena


Fundamental hindrances to this challenge

- No comprehensive aeroelastic benchmarking validation standard exists
- No sustained, successful effort to coordinate validation efforts

Approach

- Perform comparative computational studies on selected test cases
- Identify errors & uncertainties in computational aeroelastic methods
- Identify gaps in existing aeroelastic databases
- Provide roadmap of path forward

Building block approach to benchmarking & validation

Validation Objective of 1st Workshop


Unsteady aerodynamic pressures due to forced sinusoidal oscillations

Future Workshops

- Directed by results of this workshop
- Directed by big-picture assessment of needs & interests

Aeroelastic Prediction Workshop

- Workshop presentations are on AePW website
 https://c3.nasa.gov/dashlink/proje cts/47/
- Reported results in special sessions at ASM, SDM & IFASD

Configurations Selected

 Rectangular Supercritical Wing (RSW)

 Benchmark Supercritical Wing (BSCW)

 High Reynolds number Aero-Structural Dynamics Model (HIRENASD)

Configuration / Data Set Selection Rationale

- Perceived Simplicity & Complexity
 - Geometric
 - Flow Physics
- All configurations have
 - Transonic flow
 - Unsteady pressure data
 - Forced transition to turbulent flow
 - Steady data
 - Forced oscillation data
- <u>Availability</u>
 - Distribution unrestricted

Configuration / Data Set Selection Compromises

- Configurations are not "aeroelasticky"
- Deflection data is sparse
- Expected flow phenomena does not encompass all possible applicable flows for aeroelastic configurations
- Results from workshop comparisons can not be directly translated to critical aeroelastic quantities
- Results of this workshop will only tell us how well we can predict the class of phenomena that we are looking at:
 - Forced transition
 - Shock-separated flow
 - Forced oscillations
 - Uncoupled and weakly coupled aerodynamics

Outline

- Workshop overview
- Overview of lessons learned
- Lessons learned in separated flow simulation & experiments
- Path forward discussion

General questions addressed by lessons learned

• How good are our tools, and what aspects of those tools need further development?

• What comparison data or experimental data characteristics would have improved our confidence in experiment representing relevant truth?

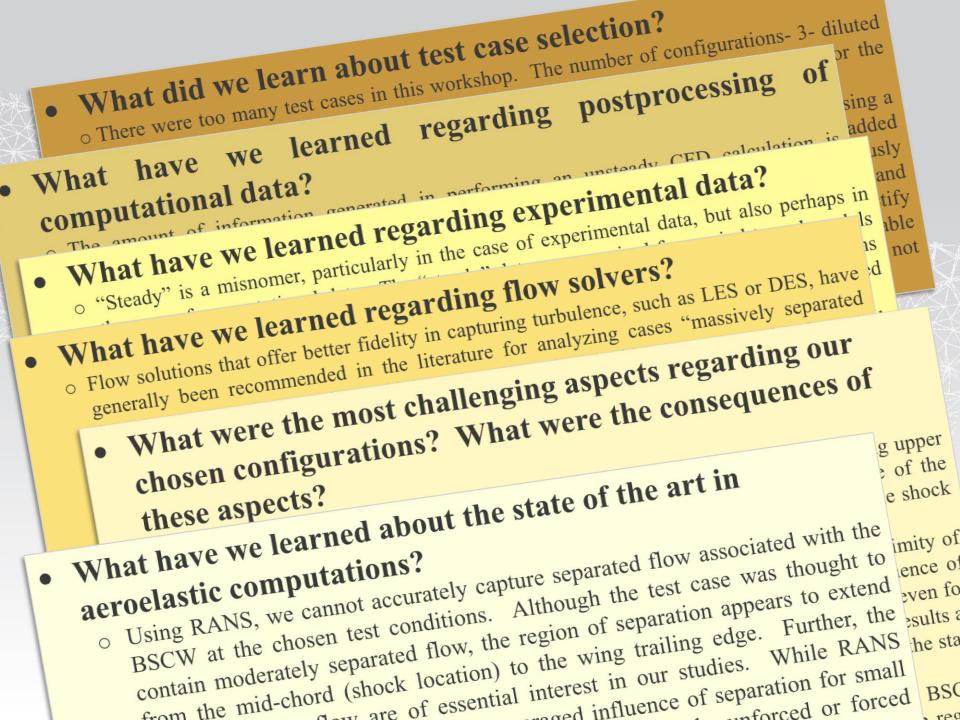
Rectangular Supercritical Wing (RSW)

- Simple, rectangular wing
- Structure treated as rigid
- Lessons Learned:
 - Wall effects modeling

NASA

Benchmark Supercritical Wing (BSCW)

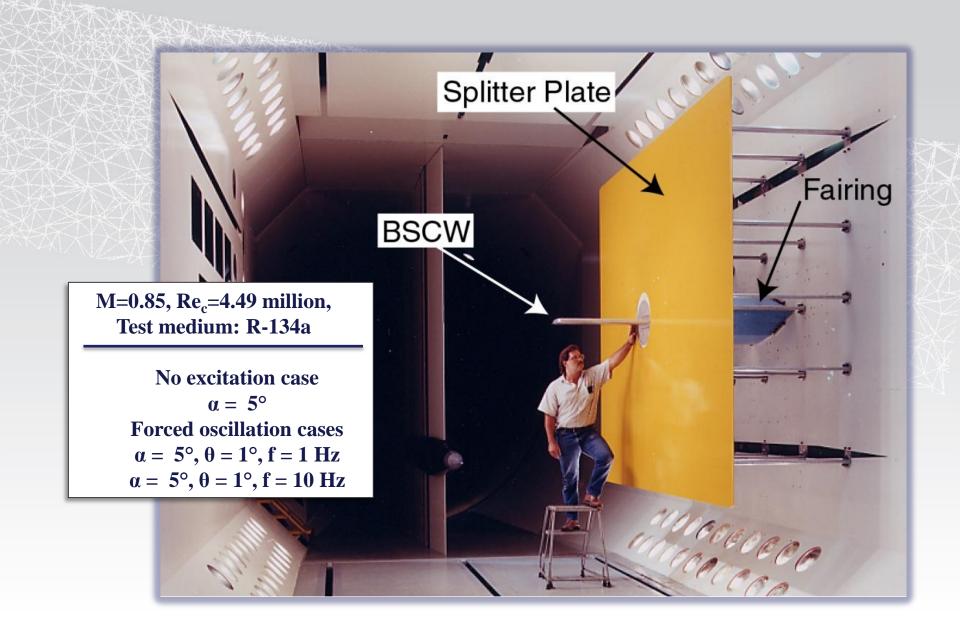
- Simple, rectangular wing
- Structure treated as rigid
- Lessons Learned
 Separated flow modeling

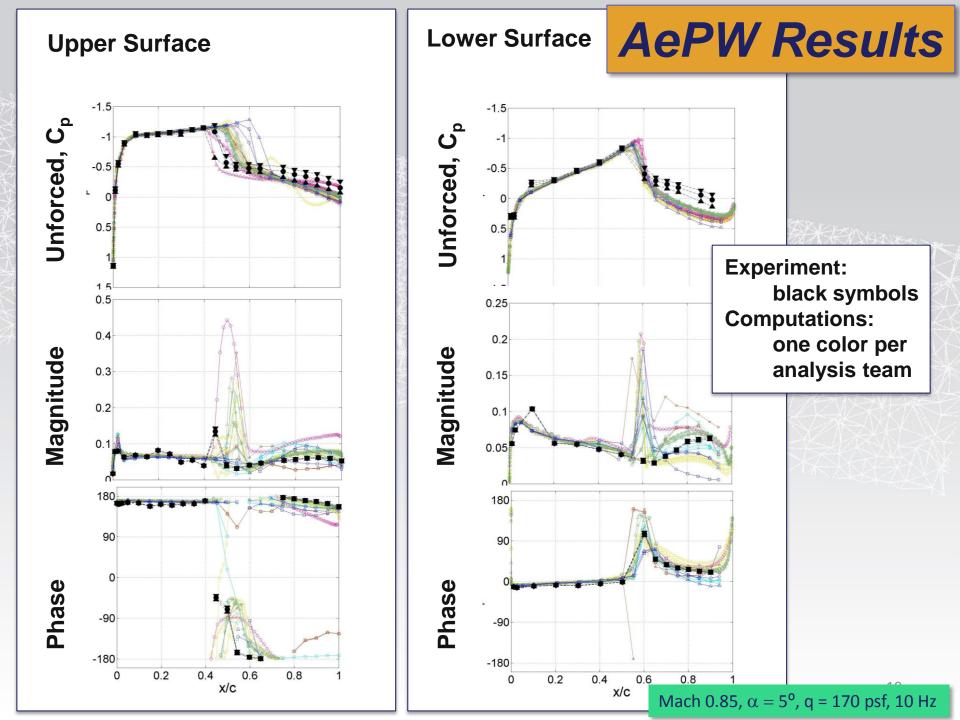

HIRENASD

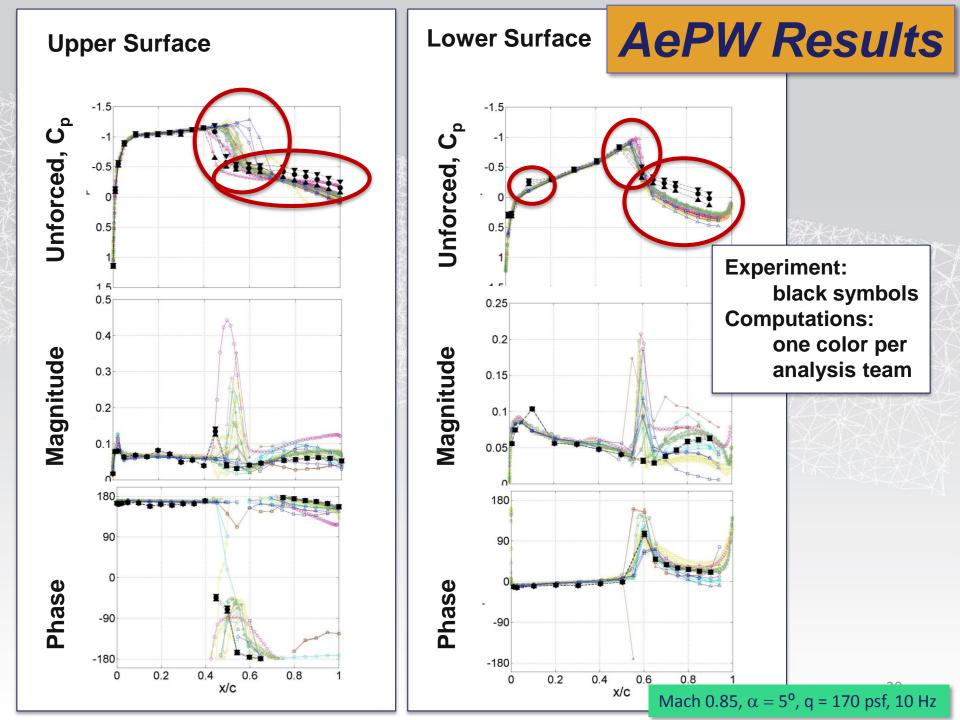
RWITHAACHEN UNIVERSITY

THE ALL AND ALL

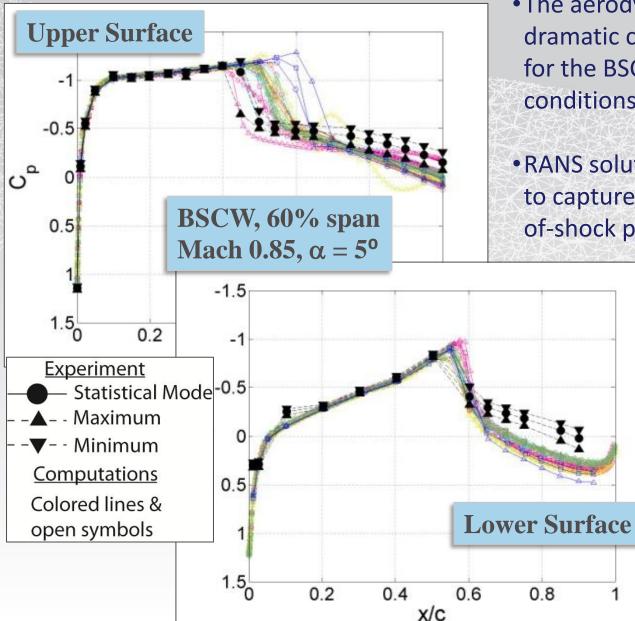
- 3-D aeroelastic wing with generic fuselage model
- Treated as aeroelastic here
 - Relatively weak aeroelastic coupling
- Forced oscillation at 2nd bending mode frequency
- Lessons learned
 - Importance of data processing influences
 - Quantifying variations
 - Criticality of static aeroelastic behavior for unsteady aerodynamics

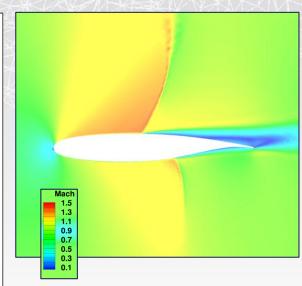



Outline

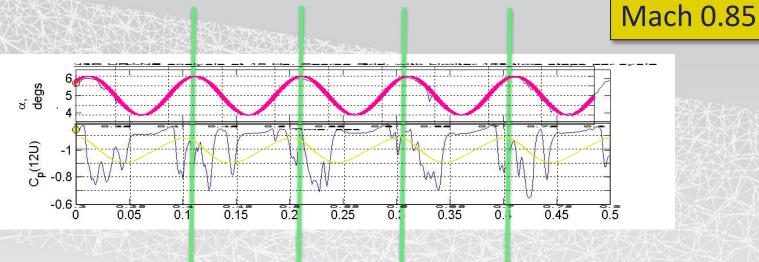

- Workshop overview
- Overview of lessons learned
- Lessons learned regarding separated flow experiments & modeling
- Path forward discussion

• What have we learned regarding flow solvers? **• Reynolds-Averaged Navier-Stokes (RANS) with Spalart-**Allmaras (SA) or Menter's SST turbulence modeling is the State of the Art (or rather state of the current practice • The degree of separation previously thought to be • Flow solutions that offer better fidelity in capturing turbulence, such as LES or DES, have generally been recommended in the literature for analyzing cases "massively separated flows" exist, usually occurring at high angles of attack. The highest mean angle of attack case for the AePW was the BSCW configuration, $\alpha = 5^{\circ}$. This test case generated what was assessed as moderately separated flow. The workshop results for BSCW led to the assessment that the URANS solutions were insufficient for this case. Some analysts are pursuing higher order CFD methods for this configuration. In this case, at a moderate angle of attack, the separated flow features are significant enough to cause a qualitative change to the shock motion and qualitative changes in the aft loading. While these changes may or may not be significant for integrated loads such as lift and pitching moment coefficient, they are likely significant for assessing aeroelastic stability, which is highly dependent on \circ In order to get the steady pressure distribution correct, it is essential to get the stati aeroelastic deformed shape correct. Failure to do this results in effective changes in th Setted Light Light the rigid shape, rather than the deflected aeroelastic shape resulted


Benchmark Supercritical Wing (BSCW)



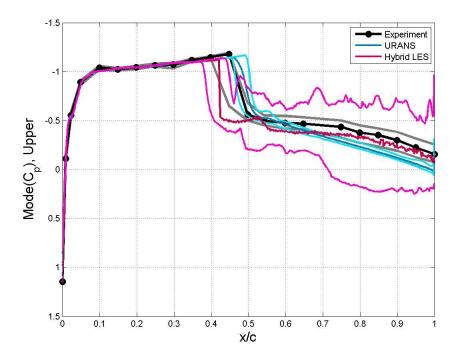
Higher fidelity simulations (> RANS) required for separated flow case

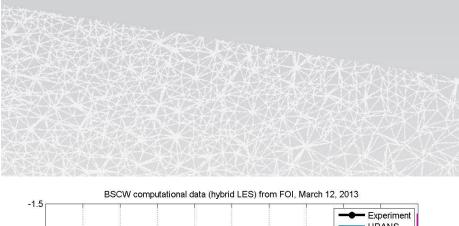


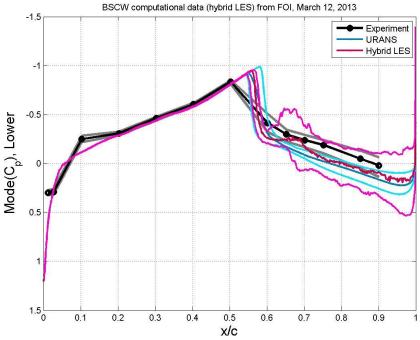
•The aerodynamic behavior shows a dramatic change in experimental data for the BSCW configuration for conditions that are post-separation

• RANS solutions have NOT been able to capture the shock location or aftof-shock pressure distributions

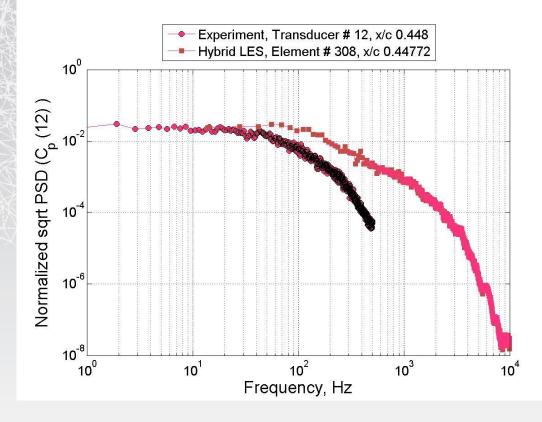
Comparison of behavior at Mach 0.85, Experiment & URANS




Experiment: blue Computation: yellow Cp


Coarse grid, with flux limiter, coarse time step, last cycles of computational results

During the cycle when the angle of attack is highest: Exp: Sensor is aft of the shock leading edge; shock has oscillated forward Computation: Sensor is at its highest value, i.e. as close to the shock leading Edge as it will ever get; shock is at its aft-most location when angle of attack is highest


Preliminary Results from applying higher fidelity method

Frequency domain analysis of preliminary higher fidelity method results

Problems in performing comparisons:

Experimental data acquired with a lower sample rate Computational data acquired for a shorter time record Applying Fourier analysis methods to nonlinear time histories

Outline

- Workshop overview
- Overview of lessons learned
- Lessons learned in separated flow simulation & experiments
- Path forward discussion

Some Potential Paths Forward

- Industry perspective on critical needs
- Extension to aeroelastic analysis
- Higher fidelity methods
- Validation experiment definition
- Extending use of existing experimental data sets

Workshop Summary

- Data for all configurations is public-domain
- Configuration & test case selection based on compromises in simplicity & complexity
- Computational team participation was diverse
- RSW configuration & data set final report generated
- We are working to plan the path forward

Thank you

For listening and being a kind audience and

To Paul Taylor for presenting this material

Gridding Acknowledgements

Lead	Organization	Configuration	Software	Description
Marilyn Smith	Georgia Tech	RSW	SolidMesh	Unstructured
Thorsten Hansen	Ansys Germany	RSW, BSCW	ICEM CFD	Structured hexahedral
Pawel Chwalowski	NASA	RSW, BSCW, HIRENASD	VGRID	Unstructured mixed and tetrahedral
Eric Blades	ATA Engineering	BSCW	SolidMesh	Unstructured, node-based, mixed
Markus Ritter	DLR	HIRENASD	Centaur Solar	Unstructured mixed
Daniella Raveh	Technion	HIRENASD		Overset structured

AePW Reference Publications

IFASD 2011, Paris

- Heeg, J.; et al, "Plans for an Aeroelastic Prediction Workshop," IFASD-2011-110, International Forum on Aeroelasticity & Structural Dynamics, June 2011, Paris-
- Chwalowski, P., Florance, J., Heeg, J., Wiseman, C., and Perry, B, "Preliminary computational results of HIRENASD configuration in preparation for the Aeroelastic prediction Workshop," IFASD_2011-108, June 2011, Paris.
- Hassan, David, and Ritter, Markus, "Assessment and prediction capabilities for numerical aeroelasticity based on HIRENASD configuration," IFASD-2011-109, June 2011, Paris.

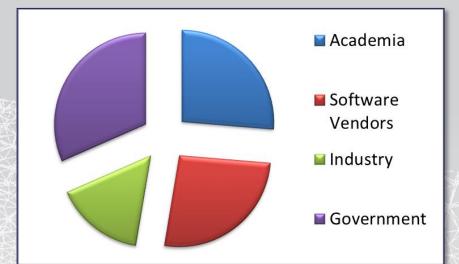
ICCFD 2012, Hawaii

• Schuster, D., Chwalowski, P., Heeg, J., and Wieseman, C., "Summary of data and findings from the First Aeroelastic Prediction Workshop," Tech. rep., Hawaii, 2012, 7th International Conference on Computational Fluid Dynamics, ICCFD7-2012.

AIAA ASM 2013, Grapevine Texas

- Heeg, J., Chwalowski, P., Florance, J.P., Wieseman, C.D., Schuster, D.M., and Perry, B. III, "Overview of the Aeroelastic Prediction Workshop," AIAA 2013-0783, 51st AIAA Aerospace Sciences Meeting, January 7-10, 2013, Grapevine, Texas.
- Schuster, D.M., Heeg, J., Wieseman, C.D., and Chwalowski, P., "Analysis of test case computations and experiments for the Aeroelastic Prediction Workshop," AIAA-2013-0788.
- Mavriplis, D.J., Yang, Z., and Long, M., and Sitaraman, J., "Results using NSU3D for the First Aeroelastic Prediction Workshop," AIAA 2013-0786, 51st AIAA Aerospace Sciences Meeting, January 7-10, 2013, Grapevine, Texas.
- Raveh, D.E., Yossef, Y.M. and Levy, Y, "Flow simulations for the first Aeroelastic Prediction Workshop using the EZNSS code," AIAA 2013-0787, 51st AIAA Aerospace Sciences Meeting, January 7-10, 2013, Grapevine, Texas.
- Chwalowski, P., Heeg, J., Wieseman, C.D., and Florance, J.P., "FUN3D analyses in support of the First Aeroelastic Prediction Workshop," AIAA 2013-0785, 51st AIAA Aerospace Sciences Meeting, January 7-10, 2013, Grapevine, Texas.
- Heeg, J., Chwalowski, P., Wieseman, C.D., Florance, J.P., and Schuster, D.M., "Lessons learned in the selection and development of test cases for the Aeroelastic Prediction Workshop: Rectangular Supercritical Wing," AIAA-2013-0784, 51st AIAA Aerospace Sciences Meeting, January 7-10, 2013, Grapevine, Texas.

AIAA SDM 2013, Boston


- Heeg, J., Chwalowski, P., Schuster, D.M., and Dalenbring, M., "Overview and lessons learned from the Aeroelastic Prediction Workshop," AIAA 2013-1798, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, Massachusetts, Jan. 8-11, 2013.
- Dalenbring, M., Jirasek, A., Chwalowski, P., et al. "Initial Investigation of the BSCW Configuration using Hybrid RANS-LES modeling," AIAA-2013-1799.
- Nikbay, M. and Acar, P., "Steady and unsteady aeroelastic computations of HiReNASD wing for low and high Reynolds numbers," AIAA-2013-1800.
- Wieseman, C., Chwalowski, P., Heeg, J., Boucke, A., and Castro, J., "Structural Dynamics Modeling of HIRENASD in Support of the Aeroelastic Prediction Workshop," AIAA-1801.
- Heeg, J., and Piatak, D., "Experimental data from the benchmark super-critical wing wind tunnel test on an oscillating turntable", AIAA-2013-1802.

Backup Material

Workshop Contributors

- 17 analysis teams providing analysis results for workshop
- 26 total analysis sets provided for workshop

RSW	BSCW	HIRENASD
6	6	14

- 59 registered attendees
- Organized by a committee of 19 government, industry, and university aeroelastic specialists representing both the United States and Europe

- Experimental data sets from
 - Aachen University
 - \circ NASA

AePW Analysis Teams

Affiliation	Analysis Team Members	RSW	BSCW	HIRENASD
NASA	Pawel Chwalowski	х	х	x
ANSYS Germany GMBH	Thorsten Hansen,	х	х	x
	Angela Lestari			
University of Wyoming	Dimitri Mavriplis,	х	х	х
	Mike Long,			
	Zhi Yang,			
	Jay Sitaraman			
RUAG Aviation	Alain Gehri,	х	х	x
	Daniel Steiling			
NASA	David Schuster,	х	х	
	Andrew Prosser			
Swedish Defense Research Agency, FOI	Mats Dalenbring,		х	x
	Adam Jirasek			
Technion University IIT	Daniella Raveh		х	х
Georgia Institute of Technology	Marilyn Smith,		х	
	Benn Mann			
University of Liverpool	Sebastian Timme	х		
NLR	Bimo Pranata,			x
	Bart Eussen			
	Jaap van Muijden			
ONERA	Anne-Sophie Sens,			x
	Jean-Pierre Grisval			
DLR	Markus Ritter			х
Istanbul Technical University	Melike Nikbay,			x
&	Pinar Acar,			
	Cagri Kilic,			
ZONA Technology, Inc.	Zhichao Zhang			
Politecnico de Milano	Sergio Ricci,			x
	Andrea Parrinello,			
	Giulio Romanelli			
MSC and	Jack Castro,			x
Metacomp	Beerinder Singh			
Boeing Research & Technology	Mori Mani,			x*
	Andrew Cary,			
	Larry Brase			
CD-Adapco	Alain Mueller,			x*
	Sergey Zhelzov			

* Analyses performed were different from those required for comparison with other AePW datasets.

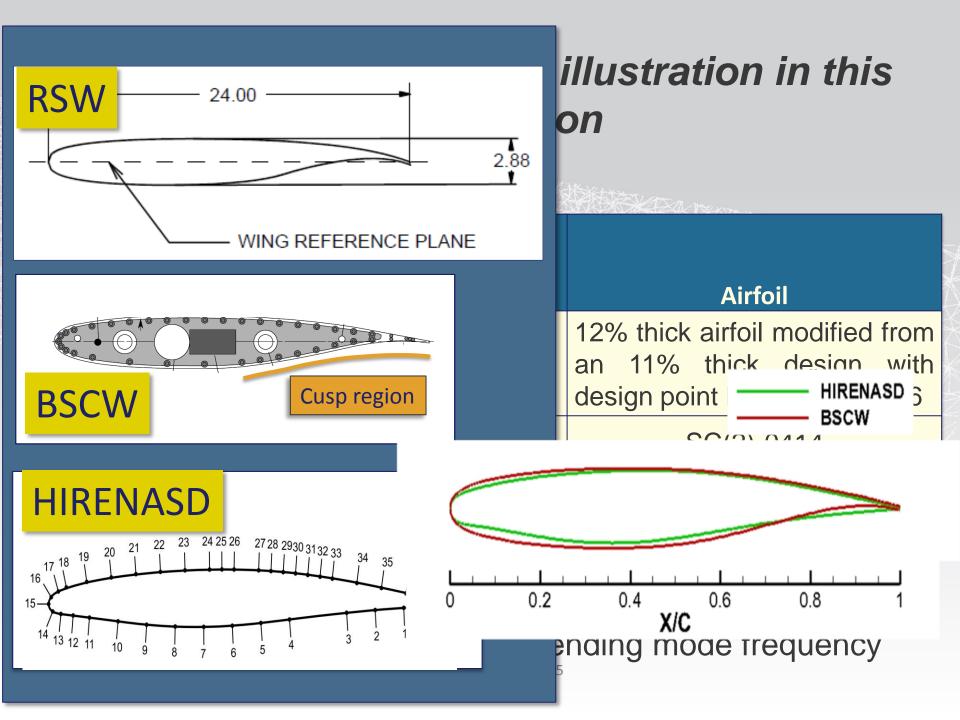
	Name	Affiliation
	Bhatia, Kumar	Boeing Commercial Aircraft
	Ballmann, Josef	Aachen University
	Blades, Eric	ATA Engineering, Inc.
	Boucke, Alexander	Aachen University
	Chwalowski, Pawel	NASA
	Dietz, Guido	European Transonic Windtunnel (ETW)
	Dowell, Earl	Duke University
	Florance, Jennifer	NASA
	Hansen, Thorsten	ANSYS Germany GmbH
	Heeg, Jennifer	NASA
)	Mani, Mori	Boeing Research & Technology
	Mavriplis, Dimitri	University of Wyoming
	Perry, Boyd	NASA
)	Ritter, Markus	Deutsches Zentrum für Luft- und Raumfahrt (DLR)
	Schuster, David	NASA
	Smith, Marilyn	Georgia Institute of Technology
	Taylor, Paul	Gulfstream Aerospace
	Whiting, Brent	Boeing Research & Technology
	Wieseman, Carol	NASA

Acknowledgments

Workshop sponsorship and organization AIAA Structural Dynamics Technical Committee AIAA Structural Dynamics Conference Team Product managers K.C Niedermeyr and Elizabeth Carter Event planner Cathy Chenevey NASA Engineering & Safety Center

Funding of NASA participation, geometry generation & workshop organization NASA Subsonic Fixed Wing Program

HIRENASD Research Project Aachen University


HIRENASD Project Funding German Research Foundation (DFG)

Grid Generation Ansys, ATA, Georgia Tech, Technion University, ISCFDC, NASA, DLR

Test conditions used for illustration in this presentation

シャンティン	Config	Mach	α	Re _c , millions	Excitation freq, Hz	Airfoil
1VAV	RSW	0.825	2	4	10	12% thick airfoil modified from an 11% thick design with design point Mach 0.8, C_{L} 0.6
	BSCW	0.85	5	4.5	10	SC(2)-0414
	HIRENASD	0.8	1.5	7	80	BAC 3-11

RSW & BSCW: Excited in pitch motion HIRENASD: Excited at 2nd bending mode frequency

Comparison Data Matrix

			IS		
して見ていた	CONFIGURATION	GRID CONVERGENCE STUDIES	TIME CONVERGENCE STUDIES	STEADY CALCULATIONS	DYNAMIC CALCULATIONS
	Steady-Rigid Cases (RSW, BSCW)	C _L , C _D , C _M vs. N ^{-2/3}	n/a	 Mean C_p vs. x/c Means of C_L, C_D, C_M 	n/a
	Steady– Aeroelastic Cases (HIRENASD)	C _L , C _D , C _M vs. N ^{-2/3}	n/a	 Mean C_p vs. x/c Means of C_L, C_D, C_M vertical displacement vs. chord Twist angle vs. span 	n/a
	Forced Oscillation Cases (all configurations)	• Magnitude and Phase of CL, CD, CM vs. N ^{-2/3} at excitation frequency	•Magnitude and Phase of C_L , C_D , C_M vs. dt at excitation frequency	n/a	 Magnitude and Phase of C_p vs. x/c at span stations corresponding to transducer locations Magnitude and Phase of C_L, C_D, C_M at excitation frequency Time histories of C_p's at a selected span station for two upper- and two lower-surface transducer locations

RSW Flow Solution Information

					Oscillatory
Analysis	Software	Turbulence	Flux	Flux	Solution
Team	Name	Model^*	Construction	Limiter	Method
А	NSMB	SA	Unknown	None	Elastic+TFI
В	FUN3D	\mathbf{SA}	Roe	Venkat	Elastic
\mathbf{C}	CFL3D	\mathbf{SA}	Roe	None	Modal+TFI
D	ANSYS CFX	\mathbf{SST}	2nd Order Upwind/	Barth &	Diffusion equation
			Rhie Chow	Jesperson	
\mathbf{E}	NSU3D	\mathbf{SA}	Matrix Artificial	None	Full grid motion
			Dissipation		
\mathbf{F}	PMBv1.5	\mathbf{SA}	Osher	MUSCL+	Full grid motion
				van Albada	

BSCW Flow Solver Information

Analysis Team	Software Name	Turbulence Model [*]	Flux Construction	Flux Limiter
А	NSMB	SA	Unknown	None
В	FUN3D	\mathbf{SA}	Roe	Venkat
\mathbf{C}	CFL3D	\mathbf{SA}	Roe Flux	None
			difference splitting	
D	NSU3D	\mathbf{SA}	Central difference with	Unknown
			matrix dissipation	
${ m E}$	ANSYS CFX	\mathbf{SST}	2^{nd} Order Upwind	Barth & Jesperson
			Rhie Chow	

HIRENASD flow solver information

Analysis	Software	Turbulence	Flux	Flux
Team	Name	Model^*	Construction	Limiter
A	ENFLOW	k- ω	Central difference with	TVD
			artificial dissipation	
В	NSMB	k- <i>w</i>	unknown	None
С	$CFD++\setminus NASTRAN$	k-ε	HLLC	Compressive-MinMod
D	EZNSS	SA	HLLC	Venkat
Е	EDGE	SA	Central difference ¹	None
	EDGE	\mathbf{SA}	Roe^2	Venkat
F	TAU	\mathbf{SA}	Central scheme	None
			with scalar	
			dissipation	
G	elsA	\mathbf{SA}	Jameson	None
Η	NSU3D	\mathbf{SA}	Central difference with	None
			matrix dissipation	
Ι	ZEUS^\dagger	G	Central difference with	None
			JST artificial dissipation	
J	FUN3D	\mathbf{SA}	Roe	Venkat
Κ	ANSYS CFX	\mathbf{SST}	2 nd Order upwind/	Barth & Jesperson
			Rhie Chow	
L	ST^{\ddagger}	n/a	unknown	None
М	AeroFoam	SA	$\operatorname{Roe} + \operatorname{LW}$	vanLeer

RSW Submitted Grids

Analysis	Grid	Element	Solver	Number o	f Nodes or C	ells, (millions)
Team	$Type^*$	Type^{\dagger}	Type [‡]	Coarse	Medium	Fine
А	Str	Hex	Cell	3.38	9.91	27.0
В	Unstr	Mix	Node	2.88	7.07	18.23
\mathbf{C}	Str	Hex	Cell	0.18	1.42	11.18
D	Str	Hex	Node	1.91	5.89	15.42
Ε	Unstr	Mix	Node	2.87	7.07	18.28
\mathbf{F}	SMB	Hex	Cell	2.32	6.60	18.63

* Structured (Str), Unstructured (Unstr), Structured MultiBlock (SMB)
† Hexagonal (Hex), Mixed Hexagonal & Tetrahedral (Mix)
‡ Cell-centered (Cell), Node-centered (Node)

BSCW Submitted Grids

Analysis	Grid	Element	Solver	Number o	f Nodes or C	cells, (millions)
Team	Type [*]	Type^{\dagger}	Type [‡]	Coarse	Medium	Fine
А	Str	Hex	Cell	3.79	9.48	30.32
В	Unstr	Mix	Node	2.97	9.01	26.79
С	Str	Hex	Cell	0.14	1.07	8.40
					1.59	
D	Unstr	Mix	Node	2.97	9.01	
Е	Str	Hex	Node	1.49	5.03	13.93

* Structured (Str), Unstructured (Unstr), Structured MultiBlock (SMB)
† Hexagonal (Hex), Mixed Hexagonal & Tetrahedral (Mix)
‡ Cell-centered (Cell), Node-centered (Node)

HIRENASD Submitted Grids

Analysis	Grid	Element	Solver	Number o	f Nodes or C	ells, (millions)
Team	$Type^*$	Type^{\dagger}	Type [‡]	Coarse	Medium	Fine
А	SMB	Hex	Cell		10.66	
В	Str	Hex	Cell		9.69	
С	Unstr	Mix	Cell	2.93	8.36	24.18
D	SMB	Hex	Cell		12.61	
Ε	Unstr	Mix	Node	6.50		
	Unstr	Mix	Node	6.36		
\mathbf{F}	Unstr	Mix	Node	1.03	2.45	7.21
G	SMB	Hex	Cell	7.20		
Η	Unstr	Mix	Node	6.36	19.06	
Ι	Str	Quad	Cell	0.56		
J	Unstr	Mix	Node	6.36	19.06	56.31
Κ	Str	Hex	Node		10.03	
\mathbf{L}	Unstr	Tet	Node	0.14		
М	Unstr	Mix	Cell	1.63		

Summary of Rectangular Supercritical Wing Entries

ルメトンシンと	すいによりオイン・インプレビ		Letter in			
Analyst	А	В	С	D	E	F
CODE	NSMB	FUN3D	CFL3D	ANSYS CFX	NSU3D	PMBv1.5
TURBULENCE MODEL	SA	SA	SA	SST	SA	SAE
GRID TYPE	Str	Unstr	Str	Str	Unstr	Blstr

Str = Structured

Bistr = Block structured

Unstr = Unstructured

RSW Summary points

- CFD solutions vary widely, even for static solution; Not an accurate representation of the CFD state of the art
- Tunnel wall modeling assumptions have a significant impact on the static pressure distribution, unsteady behavior and integrated loads
- Different modeling and oscillation methods: what are the impacts of the different methods? Is this significant? Methods used:
 - Oscillating the entire computational
 - Oscillating one region of the grid relative to the rest of the domain
 - Boundary of fixed/oscillated on the splitter plate
 - Boundary of fixed/oscillated on the wing, near the root
- Definitions of converged solution seem to be subjective. (on the subiteration level, what defines converged?)

Some BSCW summary points, focused on computational results

- Computational methods had difficulty producing converged solutions due to flow field complexity
- Complex flow field also observed in experimental data; Largest magnitude of dynamic behavior appears to represent shock oscillations
- CFD solutions vary widely, even for static solution
- The flow phenomena that appear to be present on the BSCW test case include
 - shock-induced separated flow
 - geometry-induced separated flow
 - shock oscillations even in the steady solution & unforced experiment
- Convergence wrt grid size has not been consistently demonstrated
- Static predictions of pressure distribution (Xducers are at 60% span):
 - Predictions of upper surface shock location vary by 25% of the chord
 - Predicted values of Cp ahead of shock are consistent among analyses and consistent with experimental data
 - If experimental data is taken as gospel, CFD solutions predict shock too far downstream
 - Aft of shock, the magnitude and distribution of the predictions vary and have a different distribution shape from the experimental data
 - Lower surface: aft of the shock predictions begin to fan out; disagree with the experimental data
- The analytical results tend to look more constant wrt frequency of excitation than experimental results
- Computational FRFs in the region of the shock and aft of the shock do not give consistent answers, nor do they match the experiment
- We have an insufficient number of data submitted to assign cause and effect relationships

Some more BSCW summary points, focused on experimental data

- Airfoil pitches nose upward, shock moves forward; airfoil pitches nose downward, shock moves aft ???
 - Misinterpretation of the data?
 - We've found another sign convention issue or sign error?
 - Something interesting is going on?
- There are several regions on qualitatively different pressure behavior on the airfoil upper surface
 - Leading edge, ahead of transition (noisy sinusoidal data)
 - Between transition strip and shock (sinusoidal data)
 - Shock-traversing region (floor-limited, ceiling-limited fluctuations)
 - Aft of shock region (random + sinusoidal)
- The experimental data is not well-represented by mean values for the static data, particularly in the region of the shock oscillation
- The frequency response functions obtained at a single frequency do not necessarily represent the significant physics, particularly the oscillatory shock and the separated flow
- The experimental data needs to be more closely spaced; particularly in the region of the shock.
- The experimental frequency response functions do not have constant or monotonically increasing magnitude wrt oscillation frequency. The system has dynamics within the range of the frequencies investigated. (splitter plate vertical mode clearly contributes to this variation.)
- Methods being used to characterize the flow field:
 - Mean, max, min of non-forced-oscillation data ("steady" data)
 - Histograms and statistical quantities can possibly be useful in characterizing the different flow regions
 - Frequency response functions
 - Coherence (see separate document for details of coherence vs frequency as the chord location is varied- definite changes in behavior ahead of transition strip, ahead of the shock, in the shock motion region, aft of the shock)

HIRENASD summary points

- Convergence results: Difficult to say anything at this point.
 Experimental comparison data & updates from analysts required
- CFD solutions produce consistent results for the mid-span properties, both statically and dynamically; agreement with experiment is "not so bad"
- Mach 0.7 case used as a benchmark-very benign and qualitatively good comparisons with experimental data
- Neither solver type nor turbulence model appears to differentiate goodness of static solutions; influence on frequency response functions requires more evaluation
- Wing tip region is poorly predicted
- Little attention has been paid to the leading edge suction peak or other behavior. Generally assumed that match would be poor; fully turbulent flow in modeling, forced transition in experimental data.

Thanks to Technical Working Group Leaders

Role:	RSW	BSCW	HIRENASD
Discussion Leader	Dave Schuster	Pawel Chwalowski	Markus Ritter & Dimitri Mavriplis
Technical Issue Recorder	Reik Thormann	Thorsten Hansen	

HIRENASD Project Partners

Aachen University:

Department of Mechanics

Institute for Lightweight Structures

Institute for Geometry and Applied Mathematics

Shock Wave Laboratory

Thanks to ...

- German Research Foundation (*DFG*) for funding *HIRENASD*
- Airbus Industry for supporting the balance for dynamic force measurement
- DLR for advice concerning data acquisition and providing AMIS II
- **ETW** for providing windtunnel adaptations, for e.g. dynamic force measurement, and continuous advice during preparation of model and measuring equipment

Parameters		Units		Configuration				
		English	SI	RSW (English units)	BSCW (English units)	HIRENASD (SI units)	HIRENASD (SI units)	HIRENASD (SI units)
Mach number	Μ			0.826	0.848167	0.8005	0.8	0.7
Reynolds number (based on ref chord)	Re _c			4.01e+06	4.491e+06	6999999	23486600	6997830
Reynolds number per unit	Re/ unit	Re/ft	Re/m	2.0e+06	3.368e+06	2.032e+07	6.8176e+07	2.031e+07
Dynamic pressure	q	psf	Ра	108.65	204.1967	40055.4	88696.9	36177.3
Velocity	V	ft/s	m/s	413.73	468.9833	256.5	219.5	227.0
Speed of sound	а	ft/s	m/s	501.18	552.9333	320.3	274.8	324.3
Static temperature	Tstat	deg F	deg K	37.12	87.913	246.9	181.8	253.1
Density	r	slug/ft^3	kg/m ³	0.001270	0.001857	1.22	3.70	1.41
Ratio of specific heats	g			1.132	1.116233			
Dynamic viscosity	m	slug/ft-s		2.620e-07	2.59E-07			
Prandtl number	Pr			0.78	0.6738	0.72	0.72	0.72
Test medium				R-12	R-134a	Nitrogen	Nitrogen	Nitrogen
Total pressure	н	psf	Ра	410.48	757.31	136180	301915	146355
Static pressure	Р	psf	Ра	280.76	512.12	89289	198115	105529
Purity	Х	%			95			
Total temperature	т	deg F	deg K	60.00	109.5933	278.5	205.0	277.9

Reference quantities

		RSW	BSCW	HIRENASD
Reference chord	c _{ref}	24 inches	16 inches	0.3445 m
Model span	b	48 inches	32 inches	1.28571 m
Area	А	1152 in ²	512 in ²	0.3926 m^2
Moment	Х	11.04 inches	4.8 inches	0.252 m
reference point, relative to axis	У	0	0	-0.610 m
system defns	Z	0	0	0
Transfer function reference quantity		Pitch angle Pitch angle		Vertical displacement (at x=0.87303m, y=1.24521m)

Aeroelastic Data Set Selection for CAE Code Validation Content of an "Excellent" Data Set

- Configuration that can be modeled minimizing the level of uncertainty in the analysis
- High-quality model definition
 - Well-documented geometry
 - Stiffness, mass, and inertia measurements
 - Structural dynamic properties
 - Natural frequencies
 - Mode shapes
 - Generalized mass
- High-quality wind-tunnel measurements
 - Flow regime: include subsonic, transonic, and supersonic
 - Extensive array of unsteady pressure measurements- due to forced motion
 - Quantitative displacement measurements
 - Quantitative flow visualization measurements
 - Loads measurements
 - Quantitative definition of instability boundaries (LCO, flutter, divergence, buffet, etc.)

AePW Solutions

J (Unforced Syst	em	Forced Oscillation System,			
			Tin	ne-accurate solution	S	
Steady, Steady, Time-		Unsteady	Unsteady	Unsteady		
Rigid	Static	accurate,	aerodynamic	aerodynamics on	aeroelastic	
	aeroelastic	Rigid		deformed static	response	
				aeroelastic mesh		
\checkmark			\checkmark			
\checkmark		\checkmark	\checkmark			
	\checkmark		\checkmark^{\dagger}	\checkmark	\checkmark^{\ddagger}	
	Steady, Rigid	Steady, Steady, Rigid Static aeroelastic	Rigid Static accurate, aeroelastic Rigid	Steady, Steady, Time- Unsteady Rigid Static accurate, aerodynamic aeroelastic Rigid ✓	Steady, Steady, Time- Time-accurate solution Steady, Steady, Time- Unsteady Unsteady Rigid Static accurate, aerodynamic aerodynamics on aeroelastic Rigid Rigid aeroelastic mesh	

[†] Performed only by analysis team HIRENASD-B[‡] Performed by subset of analysis teams

Rectangular Supercritical Wing (RSW)

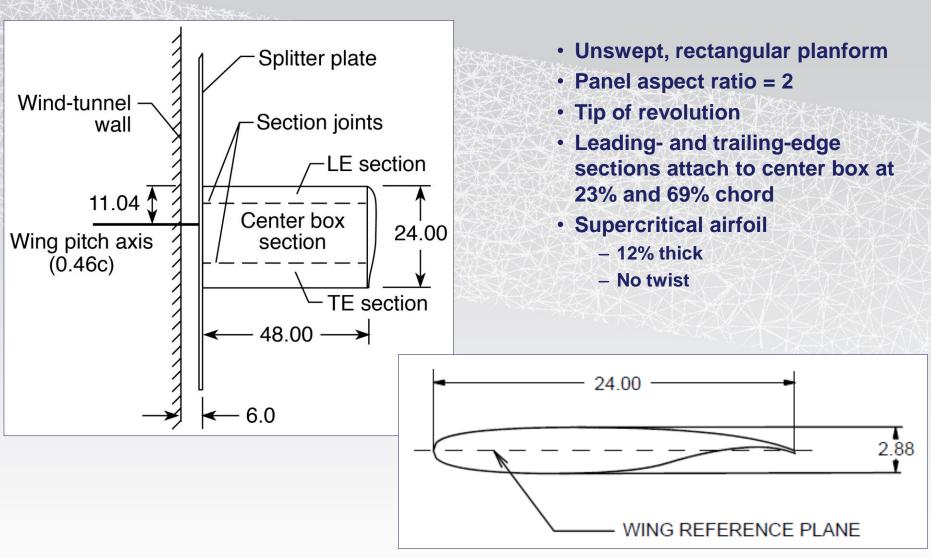
- Simple, rectangular wing
- Structure treated as rigid
- Static and forced oscillation pitching motion

Known deficiencies:

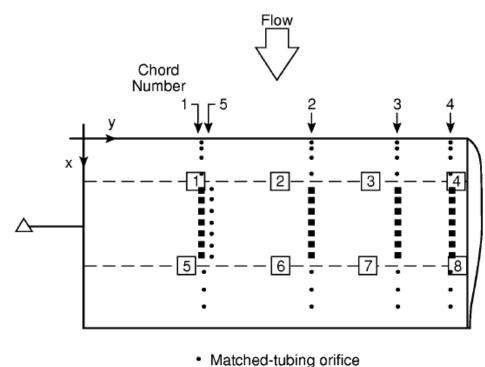
- Splitter plate deficiencies
 - Small size
 - Located in the tunnel wall boundary layer (6" off of the wall)
- Tunnel wall slots open
- Potential bad data points, not identified as such in the literature

M=0.825, $Re_c=4.0$ million, test medium: R-12

a) Steady Cases


$$\cdot \quad \alpha = 2$$

ii.
$$\alpha = 4^{\circ}$$


b) Dynamic Cases: $\alpha = 2^{\circ}, \theta = 1^{\circ}$ i. f = 10 Hz

ii.
$$f = 20 Hz$$

RSW Geometry and Construction

RSW Instrumentation Layout

- In situ transducer
- n Accelerometer
- \triangle Potentiometer

Unsteady Pressure Transducers

Kulites

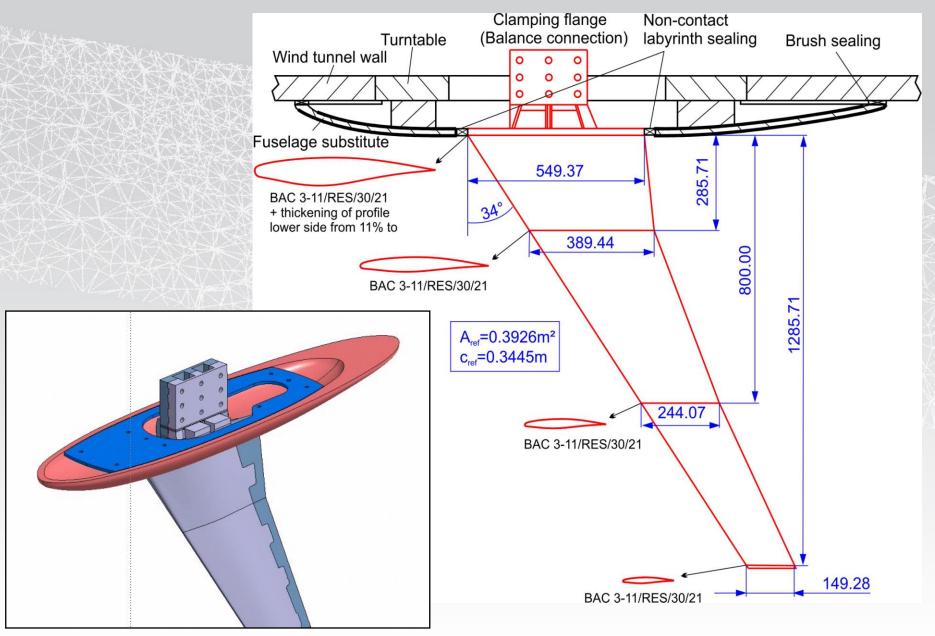
- 4 full chords (1, 2, 3, 4)
 30.9, 58.8, 80.9, and 95.1 % span
- 29 pressure per chord
 14 upper, 14 lower, 1 leading edge
- Center section: in situ
- LE & TE sections: matched tubing

Accelerometers

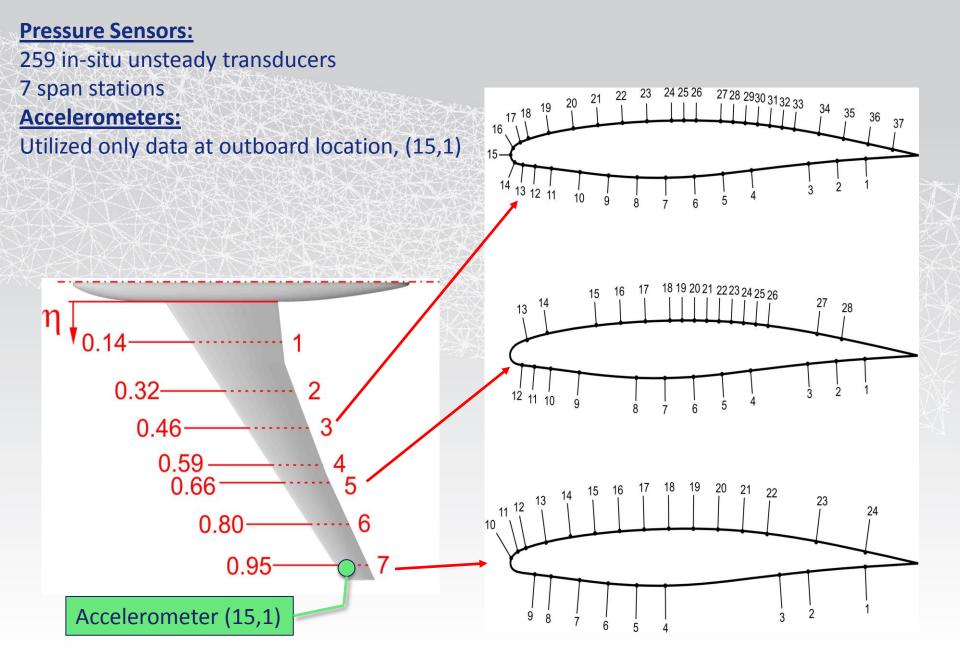
- 4 along 23% chord
- 4 along 69% chord

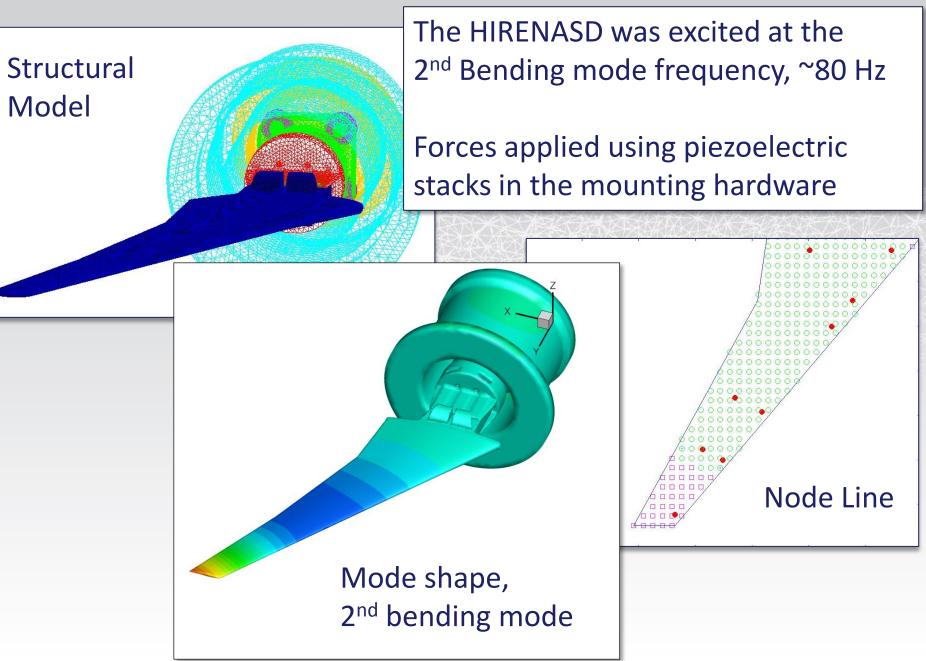
Potentiometer

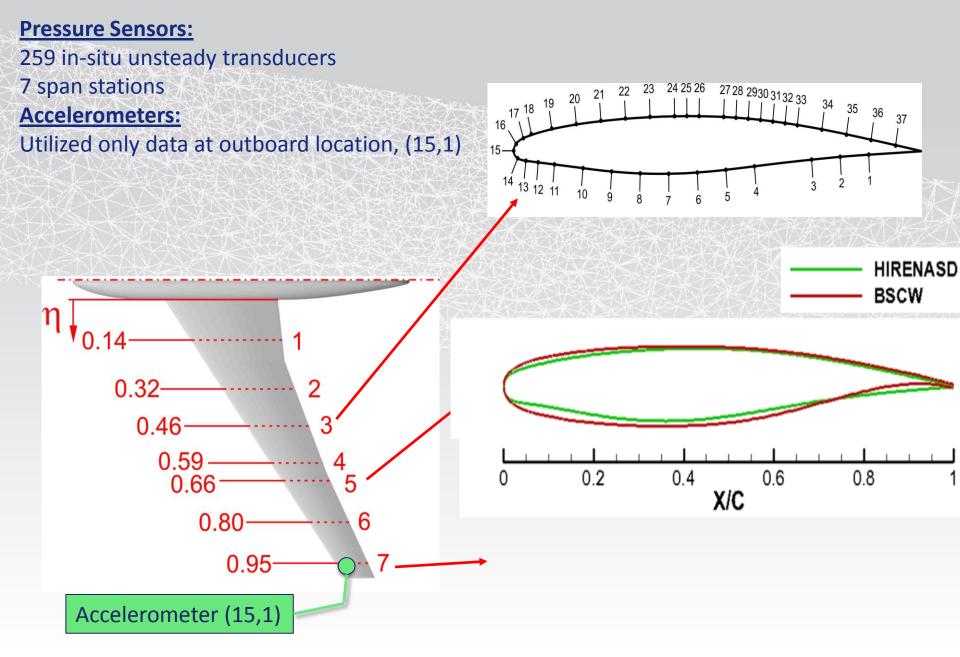
• 1 on pitch axis (46% chord)

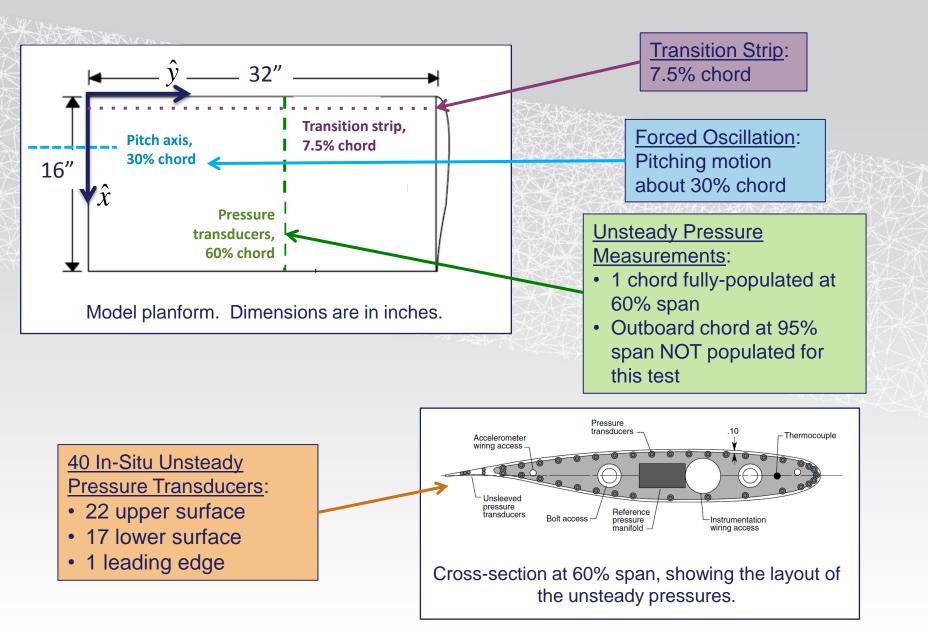

HIRENASD

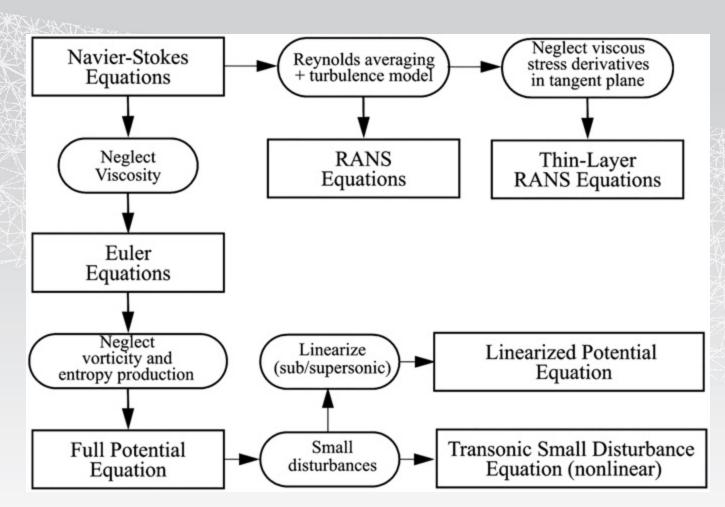
- Pros:
 - Available FEM, CFD grid, and published experimental data
 - Good distribution of unsteady pressures (259 transducers)
 - Balance loads data
 - Quantitative deformation measurements
 - Accelerometer and strain gage measurements
 - Forced vibration data at 1st and 2nd bending and 1st torsion modes
 - Slightly aeroelastic
 - Transonic conditions with realistic flight Reynolds numbers
 - Additional tests planned
- Cons:
 - No aeroelastic instability data
 - No flow visualization


High Reynolds Number Aero-Structural Dynamics (HIRENASD) Model Tested in European Transonic Wind Tunnel (ETW), 2006 Funded by Deutsch Forschungsgemeinschaft(DFG)


HIRENASD Layout and Test configuration

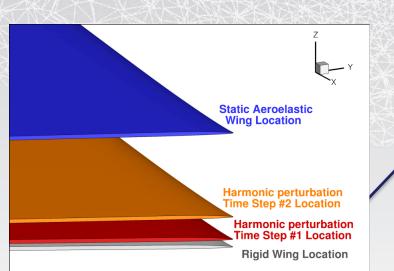

HIRENASD Instrumentation

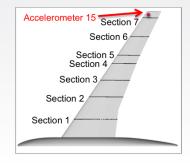

HIRENASD Structural Dynamic Model

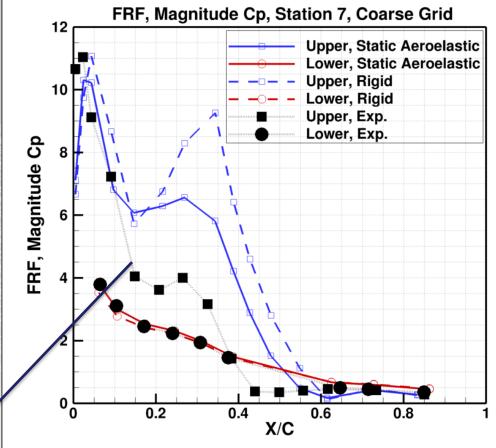

HIRENASD Instrumentation

BSCW Test Configuration

From Oddvar's unsteady aero paper

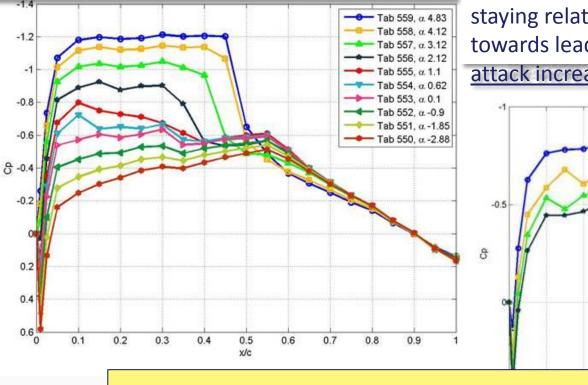

For my personal use only, since I haven't asked Oddvar for permission.


Per Configuration, the biggest lessons learned were...

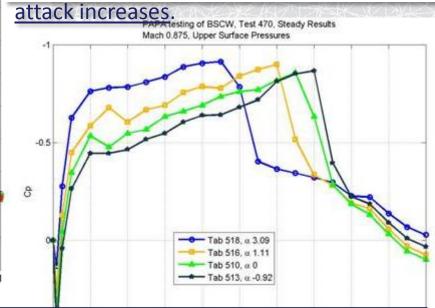

- Wall effects
- Separated flow effects
- Initial cut at studying variations with aeroelastic influences; good benchmarking test case

Influence of static aeroelasticity

Harmonic perturbation around correct initial geometry affects Cp and frequency response function near the wing tip


Overprediction of the static pressure distribution &

Overprediction (larger magnitude of dynamic response) FRFs show more dynamic response (overprediction) for the rigid wing


In-depth BSCW experimental data reduction

Prior test data of BSCW configuration on a pitch and plunge apparatus. <u>Unforced system data</u> shows an effect of separation as Mach number increases from Mach 0.8 to 0.875.

At Mach 0.8: Shows shock strengthening and moving towards the trailing edge (<u>aft</u>) <u>as angle</u> <u>of attack increases</u>.

At Mach 0.875, shows the shock strength staying relatively constant and moving towards leading edge (forward) as angle of

Note: AePW test condition is Mach 0.85

Oct 2012 mee