Flight Dynamics of Elastic Vehicles -With Emphasis on Modeling & Real-Time Simulation

Dr. David K. Schmidt Professor Emeritus University of Colorado

dschmidt@uccs.edu

As presented at the

NASA Langley Workshop on Aeroservoelastic Modeling & Simulation

> Langley Research Center Hampton, VA

> > April 18-19, 2012

Outline

- Background & Motivation
- Dynamic Modeling

Equations of Motion Model Structure

- Modal Analysis
- Simulation Issues
- Flight-Control Issues
- Summary and Conclusions

Main References

- Schmidt, Modern Flight Dynamics, McGraw-Hill, 2012. (Short Course)
- Waszak and Schmidt, "Flight Dynamics of Aeroelastic Vehicles," AIAA <u>JAC</u>, Vol. 25, No. 6, 1988.
- Waszak, Buttrill, and Schmidt, <u>Modeling and Model Simplification of Aeroelastic</u> <u>Vehicles: An Overview</u>, NASA TM-107691,1992.
- Waszak, Davidson, and Schmidt, D.K., "A [Real-Time] Simulation Study of the Flight Dynamics of Elastic Aircraft," NASA CR 4102, Vols I and II, Dec., 1987.
- Schmidt and Raney, "Modeling and Simulation of Flexible Flight Vehicles," <u>JGC&D</u>, Vol. 24, No. 3, 2001.
- Schwanz, Cerra, and Blair, "Dynamic Modeling Uncertainty Affecting Control System Design," AIAA Paper No. 84-1057-CP, Dynamics Specialists Conference, 1984.

Motivation

It has long been known that static-elastic deformation can significantly influence

Static Stability - Vehicle Trim Configuration - Control Power - Handling Qualities

But it is also apparent that <u>dynamic-elastic</u> effects can significantly influence

Vehicle "rigid-body" dynamics - coupled rigid-body/elastic DOFs - e.g., B2 Resid. Pitch Osc.
Vehicle dynamic stability - e.g., X-29 "body-freedom flutter"
Ride and handling qualities - e.g. B1, XB-70, HSCT
Achievable bandwidth and stability margins of the flight-control system

c.f., Schwanz, et al, AIAA 84-1057-CP

Complexity (cost) of the flight-control/structural-mode-control systems - many

Example Frequency Response Large, High-Speed Aircraft

Cockpit Vertical-Acceleration Response Key in Both Handling and Ride Qualities

- "Rigid-body" dynamics (e.g., $\omega_{\!S\!P}\!,\,\zeta_{\!S\!P}$) affected
- Significant amplitude and phase differences above ω_{SP} not captured simply through static-elastic corrections to rigid-body aerodynamics

Waszak & Schmidt, 1988.

Effects on Vehicle Handling Qualities Real-Time, Motion Simulation Results

Significant degradation not explained by only changes in rigid-body modal parameters Dynamic-elastic effects significant

Prognosis

As the frequencies of the elastic modes are further reduced (e.g., HALE vehicles), and/or increased performance of flight-control systems is required (e.g., reduced aerodynamic stability), elastic effects likely to become even more significant in HQ and flight-control design. (e.g., DARPA Vulture program)

Disciplinary Morphology

A broad, integrated perspective is needed

Two Disciplinary Cultures

Flight Dynamics Culture

• Charge -Tailor the vehicle dynamics:

Handling & performance Feedback stability augmentation Real-time, pilot-in-the loop simulation

• Key dynamics (e.g.):

 $\frac{\theta(s)}{\delta(s)} = \frac{K\left(s+1/T_{\theta_1}\right)\left(s+1/T_{\theta_2}\right)}{\left(s^2+2\zeta_P\omega_P s+\omega_P^2\right)\left(s^2+2\zeta_{SP}\omega_{SP} s+\omega_{SP}^2\right)}$

- RB modal characteristics are critical
- Truncate elastic degrees of freedom

Aeroelasticity Culture

• Charge - Provide structural integrity:

Mitigate against flutter, divergence Tailoring & active structural-mode control Fast-time simulation, tunnel tests

• Key dynamics:

$$\left[\mathbf{M}\right]\ddot{\mathbf{q}} + \left[\mathbf{K}\right]\mathbf{q} = \sum_{i=1}^{m} \mathbf{F}_{aero_{i}}(\mathbf{q})$$

- Extensive computational analysis
- Truncate rigid-body degrees of freedom

Modeling the Flight Dynamics of Elastic Aircraft

- Several overall approaches could be taken but keep eye on the prize
 - ➔ Want to apply models to real-time simulation, HQ, and flight-control design rather than flutter analysis, for example
- Desire model structure compatible with classical rigid-body models
 - → Want to be compatible with flight-dynamics/flight-simulation applications
- Time-domain (state-variable) format preferred
- Unsteady aerodynamics may or may not be critical low reduced frequencies

Modeling Approach

→ Assume *n* in-vacuo, unrestrained vibration frequencies ω_i , mode shapes v_i , and generalized masses \mathcal{M}_i are available to describe the flexible structure.

The elastic deformation of the vehicle at (x,y,z) may then be described by

$$\mathbf{d}_{E}(x,y,z,t) = \sum_{i=1}^{n} \mathbf{v}_{i}(x,y,z) \boldsymbol{\eta}_{i}(t)$$
(4.16)

where $\eta_i(t)$ = generalized modal displacement of the *i*'th vibration mode

 $\mathbf{v}_i(x,y,z)$ = mode shape (vector) of the *i*'th vibration mode

- Require all mode shapes rigid-body <u>and</u> vibration to be mutually <u>orthogonal</u> w.r.t. the mass matrix.
- → Assume elastic displacements sufficiently small such that inertias are constant.
- → Require the origin of the vehicle-fixed frame to be at the vehicle's instantaneous *cm*

Example Structural Description -Large Flexible Aircraft

		Vehicle Geo	metry	
	Wing	$S_W = 1950 \text{ ft}^2$ $\overline{c}_W = 15.3 \text{ ft}$		$I_{XX} = 9.5 \times 10^5 \text{ sl-ft}^2$ $I_{XX} = 6.4 \times 10^6 \text{ sl-ft}^2$
Relevant Data	Geometry	$b_W = 70$ ft	<u>Inertias</u>	$I_{YY} = 0.4 \times 10^{\circ} \text{ sl-ft}^2$ $I_{ZZ} = 7.1 \times 10^{\circ} \text{ sl-ft}^2$
		$\Lambda_{LE} = 65 \text{ deg}$		$I_{xz} = -52,700 \text{ sl-ft}^2$
	<u>Weight</u>	<i>W</i> = 288,000 lb	Vehicle Length	143 ft
		$\mathcal{M}_1 = 184 \text{ sl-ft}^2$		$\omega_1 = 12.6 \text{ rad/sec}$
	Modal	$\mathcal{M}_2 = 9587 \text{ sl-ft}^2$	<u>Modal</u>	$\omega_2 = 14.1 \text{ rad/sec}$
	Generalized Masses	$\mathcal{M}_3 = 1334 \text{ sl-ft}^2$	Frequencies	$\omega_3 = 21.2 \text{ rad/sec}$
		$\mathcal{M}_4 = 436,000 \text{ sl-ft}^2$		$\omega_4 = 22.1 \text{ rad/sec}$
NAA Modal Data Package, 1971.				

Example Vibration Mode Shapes

(Wing Twist Not Shown)

Coordinate Frames and Generalized Coordinates

We'll apply Lagrange's equation, using generalized forces

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{\mathbf{q}}}\right) - \frac{\partial T}{\partial \mathbf{q}} + \frac{\partial U}{\partial \mathbf{q}} = \mathbf{Q}^{T} = \frac{\partial(\delta W)}{\partial(\delta \mathbf{q})}$$
(4.1)

And select generalized coordinates $\mathbf{q} = \{ X_I \ Y_I \ Z_I \ \phi \ \theta \ \psi \ \eta_i, i = 1, 2, \cdots \}$

Resulting Equations of Motion (See MFD for Details)

Letting the forces and moments (Frame F) arise from aerodynamic and propulsive effects

$$m(\dot{U} - VR + WQ) = -mg\sin\theta + F_{A_{X}} + F_{P_{X}}$$

$$m(\dot{V} + UR - WP) = mg\cos\theta\sin\phi + F_{A_{Y}} + F_{P_{Y}}$$

$$m(\dot{W} - UQ + VP) = mg\cos\theta\cos\phi + F_{A_{Z}} + F_{P_{Z}}$$
(4.65)

Translational Equations (same as rigid vehicle)

Rotational Equations

(same as rigid vehicle)

$$I_{xx}\dot{P} - (I_{yy} - I_{zz})QR - I_{xy}(\dot{Q} - PR) - I_{yz}(Q^{2} - R^{2}) - I_{xz}(\dot{R} + PQ) = L_{A} + L_{P}$$

$$I_{yy}\dot{Q} + (I_{xx} - I_{zz})PR - I_{xy}(\dot{P} + QR) - I_{yz}(\dot{R} - PQ) + I_{xz}(P^{2} - R^{2}) = M_{A} + M_{P}$$

$$I_{zz}\dot{R} + (I_{yy} - I_{xx})PQ + I_{xy}(Q^{2} - P^{2}) - I_{yz}(\dot{Q} + PR) - I_{xz}(\dot{P} - QR) = N_{A} + N_{P}$$

 $\ddot{\eta}_i + \omega_i^2 \eta_i = \frac{Q_i}{\mathcal{M}_i} = \frac{1}{\mathcal{M}_i} \int_{Area} \mathbf{P}(x, y, z) \cdot \mathbf{v}_i(x, y, z) dS \quad i = 1 \cdots n$

(4.82)

(4.88)

Aeroelastic Equations (new) P = pressure distribution

Also, note that

$$\mathbf{p'} = \mathbf{p}_V + \mathbf{p}_{RB} + \sum_{i=1}^n \mathbf{v}_i(x, y, z) \eta_i(t)$$

We have the inertial position of any point on the vehicle (e.g., a sensor)

Aerodynamic Coefficients - Rigid and Elastic

Now th	he aero forces and moments	$F_{A_X} = F_{A_{X_R}} + F_{A_{X_E}}, L_A = L_{A_R} + L_{A_E}$
and elastic motion, so let		$F_{A_{Y}} = F_{A_{Y_{R}}} + F_{A_{Y_{E}}}, \qquad M_{A} = M_{A_{R}} + M_{A_{E}}$ $F = F + F \qquad N = N + N$
		$\mathbf{I}_{A_{Z}} = \mathbf{I}_{A_{Z_{R}}} + \mathbf{I}_{A_{Z_{E}}}, \mathbf{I}_{A} = \mathbf{I}_{A_{R}} + \mathbf{I}_{A_{E}}$
And for example, let the aero pitching moment be expressed as		$M_{A} = q_{\infty} S_{W} \overline{c}_{W} \left(C_{M_{Rigid}} + C_{M_{Elastic}} \right)$
	where	$C_{M_{Rigid}} = C_{M_0} + C_{M_{\alpha}}\alpha + C_{M_q}q + C_{M_{\dot{\alpha}}}\dot{\alpha} + C_{M_{\delta}}\delta$
	and	$C_{M_{Elastic}} = \sum_{i=1}^{n} \left(C_{M_{\eta_i}} \eta_i + C_{M_{\dot{\eta}_i}} \dot{\eta}_i \right)$
Likewis force o	se, let the <mark>generalized</mark> n the i'th elastic DOF be	$Q_{i} = q_{\infty} S_{W} \overline{c}_{W} \left(C_{Q_{i Rigid}} + C_{Q_{i Elastic}} \right)$
	where	$C_{Q_{iRigid}} = C_{Q_{i0}} + C_{Q_{i\alpha}}\alpha + C_{L_{\dot{\alpha}}}\dot{\alpha} + C_{Q_{i\beta}}\beta$
		$+C_{\mathcal{Q}_{ip}}p+C_{\mathcal{Q}_{iq}}q+C_{\mathcal{Q}_{ir}}r+\sum_{j=1}^{m}C_{\mathcal{Q}_{i\delta_{j}}}\delta_{j}$
Chap. 7	and	$C_{\mathcal{Q}_{i Elastic}} = \sum_{j=1}^{n} \left(C_{\mathcal{Q}_{i \eta_{j}}} \boldsymbol{\eta}_{j} + C_{\mathcal{Q}_{i \dot{\eta}_{j}}} \boldsymbol{\dot{\eta}}_{j} \right)$

Sample Expressions for Elastic Coefficients

Using strip theory we may gain some gain insight regarding coefficients.

Considering a vehicle with conventional geometry we have, for example

$$C_{\mathcal{Q}_{i_{\alpha}}} = \frac{-1}{S_{W}\overline{c}_{W}} \left(\int_{-b_{W}/2}^{b_{W}/2} c_{l_{\alpha_{W}}}(y) v_{Z_{i_{W}}}(y) c_{W}(y) dy + \frac{q_{H}}{q_{\infty}} \int_{-b_{H}/2}^{b_{H}/2} c_{l_{\alpha_{H}}}(y) \left(1 - \frac{d\varepsilon_{H}}{d\alpha_{W}} \right) v_{Z_{i_{H}}}(y) c_{H}(y) dy \right)$$
(7.94)

$$C_{\mathcal{Q}_{i_{\eta_{j}}}} = \frac{-1}{S_{W}\overline{c}_{W}} \left(\int_{-b_{W}/2}^{b_{W}/2} c_{l_{\alpha_{W}}}(y) v_{Z_{j_{W}}}(y) v_{Z_{i_{W}}}(y) c_{W}(y) dy - \frac{q_{H}}{q_{\infty}} \int_{0}^{b_{V}} c_{l_{\alpha_{V}}}(z) v_{Y_{j_{V}}}(z) c_{V}(z) dz + \frac{q_{H}}{q_{\infty}} \int_{0}^{b_{H}/2} c_{l_{\alpha_{H}}}(y) \left(v_{Z_{j_{H}}}'(y) - \frac{d\varepsilon_{H}}{d\alpha_{W}} v_{Z_{j_{W}}}'(y) \right) v_{Z_{i_{H}}}(y) c_{H}(y) dy \right)$$
(7.95)

Where $V_{Z_i}(y) = z$ displacement mode shape of mode *i* evaluated along wing or tail span *y* $V'_{Z_i}(y) =$ slope of *z* displacement mode shape of mode *i* evaluated along wing or tail span *y*

Example - Large, High Speed Study Vehicle

Dynamic Model of the Elastic Aircraft

Rigid-Body Translation of *cm*

$$m(\dot{U} - VR + WQ) = -mg\sin\theta + \left(F_{A_{X_R}} + F_{A_{X_E}}\right) + F_{P_X} \quad \text{Elastic Effects}$$
$$m(\dot{V} + UR - WP) = mg\cos\theta\sin\phi + \left(F_{A_{Y_R}} + F_{A_{Y_E}}\right) + F_{P_Y} \quad (7.98)$$
$$m(\dot{W} - UQ + VP) = mg\cos\theta\cos\phi + \left(F_{A_{Z_R}} + F_{A_{Z_E}}\right) + F_{P_Z}$$

Rigid-Body Rotation of Frame F

$$I_{xx}\dot{P} - (I_{yy} - I_{zz})QR - I_{xz}(\dot{R} + PQ) = (L_{A_R} + L_{A_E}) + L_P$$

$$I_{yy}\dot{Q} + (I_{xx} - I_{zz})PR + I_{xz}(P^2 - R^2) = (M_{A_R} + M_{A_E}) + M_P$$

$$I_{zz}\dot{R} + (I_{yy} - I_{xx})PQ - I_{xz}(\dot{P} - QR) = (N_{A_R} + N_{A_E}) + N_P$$
(7.100)

Elastic Deformation

$$\ddot{\eta}_i + 2\zeta_i \omega_i \dot{\eta}_i + \omega_i^2 \eta_i = \frac{1}{\mathcal{M}_i} \left(Q_{i_R} + Q_{i_E} \right), \quad i = 1 \cdots n$$

• Identical form to that of the rigid vehicle, with added elastic components

• Applicable to real-time simulation

(7.102)

On Static-Elastic Corrections - Residualization

Ref. Sec. 7.11

Assuming locally-linear aero, the previous non-linear equations of motion may be written as

$$\mathbf{M}\dot{\mathbf{x}}_{R} = \mathbf{f}_{R}\left(\mathbf{x}_{R}, T\right) + \left[\mathbf{A}_{R}\mathbf{x}_{R} + \left[\mathbf{A}_{R\eta} \quad \mathbf{A}_{R\eta}\right]\mathbf{x}_{E} + \mathbf{B}_{R}\mathbf{u}\right]$$
$$\dot{\mathbf{x}}_{E} = \begin{bmatrix}\mathbf{0}\\\mathbf{A}_{ER}\end{bmatrix}\mathbf{x}_{R} + \begin{bmatrix}\mathbf{0}\\\mathbf{A}_{\eta}\end{bmatrix}\mathbf{x}_{E} + \begin{bmatrix}\mathbf{0}\\\mathbf{B}_{E}\end{bmatrix}\mathbf{u}$$
Aero model of forces and moments (7.126)

where,

$$\mathbf{x}_{R}^{T} = \begin{bmatrix} U & \alpha & Q & \beta & P & R \end{bmatrix}, \quad \mathbf{x}_{E}^{T} = \begin{bmatrix} \eta_{1} & \cdots & \eta_{n} & \dot{\eta}_{1} & \cdots & \dot{\eta}_{n} \end{bmatrix}, \quad \mathbf{u}^{T} = \begin{bmatrix} \delta_{E} & \delta_{A} & \delta_{R} \end{bmatrix}$$

(7.127)

(7.128)

Residualizing the elastic states ($\dot{\mathbf{x}}_{E} = \mathbf{0}$), yields the static-elastic constraint and reduced-order model.

$$\boldsymbol{\eta}_{0} = -\mathbf{A}_{\eta}^{-1} \left(\mathbf{A}_{ER} \mathbf{x}_{R} + \mathbf{B}_{E} \mathbf{u} \right) \implies \mathbf{M} \dot{\mathbf{x}}_{R} = \mathbf{f}_{R} \left(\mathbf{x}_{R}, T \right) + \left(\mathbf{A}_{R} - \mathbf{A}_{R\eta} \mathbf{A}_{\eta}^{-1} \mathbf{A}_{ER} \right) \mathbf{x}_{R} + \left(\mathbf{B}_{R} - \mathbf{A}_{R\eta} \mathbf{A}_{\eta}^{-1} \mathbf{B}_{E} \right) \mathbf{u}$$
Static-elastic aero model

Only the rigid-body degrees of freedom are included in the reduced-order dynamic model here.

Again using the example of the large flexible aircraft,

$$C_{M_{\alpha}} = -1.5 + \Delta C_{M_{\alpha}}, \ \Delta C_{M_{\alpha}} = 0.23 \text{ /rad}, \ C_{M_{q}} = -0.4 + \Delta C_{M_{q}}, \ \Delta C_{M_{q}} = 0.02 \text{ sec} \quad \text{(Example 7.3)}$$
$$C_{M_{\delta_{E}}} = -2.58 + \Delta C_{M_{\delta_{E}}}, \ \Delta C_{M_{\delta_{E}}} = 0.22 \text{ /rad}$$

These are static-elastic corrections to the rigid-body stability derivatives - destabilizing ²⁰

Structure of the Linearized Model Longitudinal Dynamics

Defining appropriate elastic dimensional stability derivatives, we have a dynamic model of the following form (assumes $X_{\dot{\alpha}} = Z_{\dot{\alpha}} = M_{\dot{\alpha}} = \gamma_0 = 0$ for simplicity)

Model structure exposes subsystems, aero coupling effects and vib. freq. & damping Applicable to dynamic analysis and control-system design 21

MFD Sec. 8.1.5

Comparison of Rigid vs Flexible Models Vertical Acceleration Responses - Example Vehicle

Model Comparisons - Continued Pitch-Attitude Response - Example Vehicle

- Residualized Model Improved Over Rigid
- But Clearly Inadequate Above ~ 5 rad/s
- Well Within Bandwidth of Pilot and Flight-Control System

Natural Linear-System Modes - Review

Ref. Sec. 10.1.1

 $\dot{\mathbf{v}}(t) = \mathbf{A}\mathbf{v}(t) \perp \mathbf{B}\mathbf{u}(t)$

Given the linear system (Physical inputs **u** and physical responses **y**)

Right and left eigenvectors

$$\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t), \qquad \mathbf{x} = \mathbf{M}\mathbf{\eta}, \qquad \mathbf{M}^{-1}\mathbf{A}\mathbf{M} = \mathbf{\Lambda}$$
(10.1)
$$\mathbf{M} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \qquad \mathbf{M}^{-1} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \\ \vdots \\ \boldsymbol{\mu}_n \end{bmatrix}$$
(10.4)

Then the dynamics of the natural modes are given by the decoupled eqns.

 $\dot{\boldsymbol{\eta}}(t) = \boldsymbol{\Lambda} \boldsymbol{\eta}(t) + \mathbf{M}^{-1} \mathbf{B} \mathbf{u}(t), \quad \Rightarrow \quad \dot{\boldsymbol{\eta}}_i(t) = \lambda_i \boldsymbol{\eta}_i(t) + \boldsymbol{\mu}_i \mathbf{B} \mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{C} \mathbf{M} \boldsymbol{\eta}(t) + \mathbf{D} \mathbf{u}(t) \quad \text{(Do not confuse w. vibration modal} \quad ^{(10.8)} \text{coordinates and mode shapes)}$

Now let
$$\mathbf{C} = \mathbf{I}, \mathbf{D} = \mathbf{0} \Rightarrow \mathbf{y}(t) = \sum_{i=1}^{n} \mathbf{v}_{i} \eta_{i}(t) \mathbf{y} = \mathbf{v}_{1} \eta_{1}(t) + \mathbf{v}_{2} \eta_{2}(t) + ... + \mathbf{v}_{n} \eta_{n}(t)$$
 (10.15)

Eigenvectors determine how each mode contributes to each physical response. And note that the *j* 'th element of \mathbf{v}_i will have the <u>units</u> of the physical response y_i .

Each eigenvector therefore constitutes a mode shape, similar to the vibration case.

Eigenvectors, Phasor Diagrams and Modal Responses Ref. Sec. 10.1.1

Eigenvectors and Impulse Residues

Ref. Sec. 10.1.2

Next, consider an impulse response (transfer function), expanded in partial-fractions

$$y(s) = g(s) = \frac{R_1}{\left(s - \lambda_1\right)} + \dots + \frac{R_n}{\left(s - \lambda_n\right)}, \qquad R_k = \left(\left(s - \lambda_k\right)g(s)\right)|_{s = \lambda_k}$$
(10.21)

So the residue R_k also determines the <u>contribution of mode *i* to the physical response</u>.

Now recall the modal matrix
$$\mathbf{M}$$
 $\mathbf{M} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$, $\mathbf{M}^{-1} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \vdots \\ \boldsymbol{\mu}_1 \end{bmatrix}$ Right and left eigenvectors
(10.22) (10.24)
And write the transfer-function matrix $\mathbf{TF}(s) = \begin{bmatrix} \mathbf{CM} \begin{bmatrix} diag(\frac{1}{s - \lambda_i}) \end{bmatrix} \mathbf{M}^{-1} \mathbf{B} \end{bmatrix} = \mathbf{C} \sum_{k=1}^n \frac{\begin{bmatrix} \mathbf{v}_k \boldsymbol{\mu}_k \end{bmatrix}}{(s - \lambda_k)} \mathbf{B}$

So each transfer function may be expressed as

$$g_{i,j}(s) = \sum_{k=1}^{n} \frac{(\mathbf{c}_i \mathbf{v}_k) (\mathbf{\mu}_k \mathbf{b}_j)}{(s - \lambda_{\kappa})} = \sum_{k=1}^{n} \frac{R_k}{(s - \lambda_{\kappa})}$$

(10.25)

- Therefore, the left and right eigenvectors determine the residues.
- Pole-zero cancellation \rightarrow that pole's residue will be zero.
- Residue magnitudes indicate significance of modes in that response.

Modal Analysis - Longitudinal Axis Large, High Speed Aircraft - Rigid Model

Classical Short-Period Mode

State definition: $x^T = [u \text{ (fps)}, \alpha \text{ (deg)}, \theta \text{ (deg)}, q \text{ (deg/s)}]$

Modal Analysis of Flex Model Large, High Speed Aircraft

RB/Elastic Coupled Modes Now Exist (e.g., B2 Residual Pitch Oscillation) Such Modes Are Not Consistent With Assumptions in HQ Database

State definition: $x^T = [u \text{ (fps)}, \alpha \text{ (deg)}, \theta \text{ (deg)}, q \text{ (deg/s)}, \theta_{CP Ei} \text{ (deg)}, \dot{\theta}_{CP Ei} \text{ (deg/s)}, i = 1...4]$ 28

Example - Impulse Residues Large, High-Speed Aircraft

Vertical Acceleration and Pitch Attitude (Cockpit)

• First aeroelastic mode at least as significant as SP in these impulse responses

Component specs compatible with simulated system dynamics

Simulation Considerations

Example Flight-Control Issue Effect of Notch Filter in Generic Control Loop

Flight Control Issues Due to Flex Effects

- Flex dynamics can destabilize the flight-control system
- Flex dynamics introduces phase loss well below lowest frequency flex mode frequency (with notch or low-pass filtering)
- Flex effects limit achievable bandwidth (crossover frequencies) of flight-control system
- Sensor placement extremely important depends on vibration mode shapes
- Flex effects increase complexity (cost) of flight-control systems (e.g., filters)
- Active structural-mode-control system may be required (e.g., B1, XB-70)

Summary & Conclusions

• Effects of flexibility on aircraft flight dynamics can be significant

Handling and ride qualities Flight-control synthesis

- New vehicle configurations/requirements may amplify these effects
- Vibration-modal data and flex models required to support flight-control design
- Real-time simulation of elastic vehicles encounters new issues sim limitations
- Renewed emphasis on cross-disciplinary modeling/analysis efforts needed
- Require math-model structure and methodology to be compatible with flight-dynamics applications
- Such an approach was outlined many extensions possible
- Working across disciplines in new areas:

Requires extra effort - must work hard to understand the other guy's problems Requires clarity in terminology, definitions, etc.