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This paper presents numerical simulations that were performed with the EZNSS flow

solver for the first NASA Langley Aeroelastic Prediction Workshop. Two configura-

tions were studied, the Benchmark Supercritical Wing (BSCW) and the High Reynolds

Number Aerostructural Dynamics (HIRENASD) model. The BSCW wing is a rigid

wing that was studied at transonic flow conditions, at a fixed angle of attack. Static as

well as time-accurate simulations were performed, using several computational meshes

and turbulence models, with the purpose of predicting the pressure coefficient dis-

tribution at a wing section at 60% of the span, where pressure data was available

from a wind tunnel experiment. All of the models predicted the shock location within

10% chords of its wind-tunnel location. None of the models predicted accurately the

pressure recovery behind the shock on the upper and lower surfaces. While some tur-

bulence models and computational setups resulted in a steady flow, some predicted

flow unsteadiness, with fluctuations of the shock position and of the aerodynamic coef-

ficient values. This may indicate that the case of the BSCW wing, at the studied flow

conditions, is on the verge of buffet instability. The HIRENASD wing was studied for

its elastic deformations and associated pressure coefficient distribution at three flow

conditions. All of the studied flow conditions resulted in good correlation between

the computed and experimental pressure coefficient data. The HIRENASD wing was

also excited at its second-bending mode. The transfer function between the pressure
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coefficient distribution at different span-wise section and the amplitude of motion of a

reference point was computed and compared to experimental data. A fair comparison

was demonstrated. Overall, it appears that the numerical simulations predicted well

the transonic static aeroelastic response and the response to forced excitation in cases

of attached flows. The transonic cases of detached flows behind a shock were found

to be highly sensitive to the numerical parameters of the simulation, especially the

turbulence model used.

I. Introduction

The accurate computation of aeroelastic responses and unsteady aerodynamic forces due to

structural motion is of great importance to aircraft aeroelastic analysis and structural design. The

first Aeroelastic Prediction Workshop (AePW), taking after the Drag and High-lift Prediction Work-

shops, addresses these topics. The AePW aims at assessment of state-of-the-art CFD codes sim-

ulating flow-fields about wings undergoing prescribed motions or elastic deformations at transonic

flight conditions. Three subject configurations were proposed for evaluation. These include the

Rectangular Supercritical Wing (RSW), the Benchmark Supercritical Wing (BSCW) and the High

Reynolds Number Aerostructural Dynamics (HIRENASD) model that were presented in [1].

The BSCW, tested in the Transonic Dynamics Tunnel at NASA Langley, is shown in Figure 1.

The model is mounted on a large splitter plate, 40 inches off of the wind tunnel wall. The BSCW

has a rigid rectangular planform, with a cross-section of the NASA SC(2)-0414 airfoil. Pressure

measurements were taken by unsteady pressure transducers at the 60% span station. Boundary

layer transition was fixed at 7.5% chord. All data used in this study was obtained at Mach 0.85 and

a dynamic pressure of 200 psf, setting the Reynolds number at 4.49 million based on wing chord.

Dynamic data was obtained for the BSCW by oscillating the model in a pitching motion about the
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30% chord point.

Fig. 1: BSCW mounted in wind-tunnel

The HIRENASD model, tested in the European Transonic Wind (ETW) tunnel, is shown in

Figure 2. The model has a 34 degree aft-swept, tapered clean wing, with a BAC 3-11 supercriti-

cal wing section. The test article is a semi-span model, ceiling-mounted through a non-contacting

fuselage faring to a turntable, balance, and excitation system. The first two bending modes have

frequencies of approximately 27 and 79 Hz; the first torsion mode has a frequency of approximately

265 Hz. The instrumentation includes 259 in-situ unsteady pressure transducers at seven span sta-

tions. In addition to the unsteady pressure measurements, balance and acceleration measurements

were obtained.

The present paper presents numerical simulations performed with the Elastic Zonal Navier-

Stokes Solver (EZNSS) in the framework of the first Aeroelastic Prediction Workshop, of the BSCW

and HIRENASD configurations. This paper presents results from steady and unsteady flows, as

well as static aeroelastic analyses.

II. Governing Equations

The governing equations are obtained by Favre-averaging the Navier-Stokes equations (RANS)

and modeling the Reynolds stress tensor. In what follows, the symbol (−) indicates non-weighted

averaging, the symbol (∼) signifies Favre averaging, and the symbol (′′) denotes Favre fluctuations.

In a compact form, the mean-flow equations may be expressed in generalized coordinates with strong
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Fig. 2: HIRENASD mounted in wind-tunnel

conservation-law form as:

∂Q̂

∂τ
+

∂(F̂ c − F̂ d)

∂ξ
+

∂(Ĝc − Ĝd)

∂η
+

∂(Ĥc − Ĥd)

∂ζ
= 0 (1)

where τ denotes the time and ξ, η, and ζ denote the curvilinear coordinates. The vector Q̂ denotes

the mean-flow dependent variables given as:

Q̂ =
Q

J
=

1

J

[
ρ̄, ρ̄ũ, ρ̄ṽ, ρ̄w̃, Ẽ

]T
(2)

where J is the Jacobian of the transformation. The fluid density is denoted by ρ, the Cartesian

velocity vector components are denoted by u, v, and w, and the total energy is denoted by E. The

mean-flow rotated inviscid fluxes are given by:

F̂ c = 1
J



ρ̄Ũ

ρ̄ũŨ + ξxp̄

ρ̄ṽŨ + ξyp̄

ρ̄w̃Ũ + ξz p̄

(Ẽ + p̄)Ũ − ξtp̄


, Ĝc = 1

J



ρ̄Ṽ

ρ̄ũṼ + ηxp̄

ρ̄ṽṼ + ηyp̄

ρ̄w̃Ṽ + ηz p̄

(Ẽ + p̄)Ṽ − ηtp̄


, Ĥc = 1

J



ρ̄W̃

ρ̄ũW̃ + ζxp̄

ρ̄ṽW̃ + ζyp̄

ρ̄w̃W̃ + ζz p̄

(Ẽ + p̄)W̃ − ζtp̄


(3)
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where p denotes the pressure, and U ,V , and W denote the Contravariant velocity components given

by the relation: 
Ũ − ξt

Ṽ − ηt

W̃ − ζt

 =


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz




ũ

ṽ

w̃

 (4)

The mean-flow rotated diffusive flux vectors are given by:

F̂ d = 1
J



0

ξi(τ̄ix − R̃ix)

ξi(τ̄iy − R̃iy)

ξi(τ̄iz − R̃iz)

ξiβi


, Ĝd = 1

J



0

ηi(τ̄ix − R̃ix)

ηi(τ̄iy − R̃iy)

ηi(τ̄iz − R̃iz)

ηiβi


, Ĥd = 1

J



0

ζi(τ̄ix − R̃ix)

ζi(τ̄iy − R̃iy)

ζi(τ̄iz − R̃iz)

ζiβi


(5)

where τij and R̃ij = ũ′′
i u

′′
j , are the viscous stress tensor and Reynolds-stress tensor components,

respectively. The terms βi are given as follows:

βi = ũ
(
τ̄ix − R̃ix

)
+ ṽ

(
τ̄iy − R̃iy

)
+ w̃

(
τ̄iz − R̃iz

)
+ (κ̄+ κ̄t)

∂T̄

∂xi
(6)

with T denoting the temperature and κ̄ and κ̄t are the molecular and the turbulent thermal con-

ductivity, respectively. The mean-flow equations are closed using the equation of state for a perfect

gas,

p̄ = (γ − 1)

[
Ẽ − 1

2
ρ̄
(
ũ2 + ṽ2 + w̃2

)]
(7)

where γ is the ratio of specific heats. The unknown Favre-averaging Reynolds stress tensor is

modeled in this work using either the Boussinesq hypothesis, via a linear eddy viscosity model,

or by using a second moment closure. Two linear eddy viscosity closure models were used in the

current work, the two-equation k-ω model developed by Kok [2], also known as the TNT model

and is hereto forth referred to as k-ω-TNT , and the Spalart & Allmaras model with Edwards and

Chandra modification [3], referred to as SA-EC. The second-moment closure model that is used in

the current work was developed by Wilcox [4], and is known as the Stress-ω model, referred herein

as RSM -ω. Note that the simple diffusive gradient model that is used in the original Stress-ω model

is replaced by the Daly-Harlow [5] diffusive model.
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III. Numerical Methods

A. Flow Solver

The governing equations are discretized using a finite difference method on a curvilinear coor-

dinates computational mesh using the Israeli CFD Center (ISCFDC) in-house code, EZNSS. The

EZNSS code is a multi-zone Euler/Navier-Stokes flow solver. The code is capable of simulating

complex, time-accurate flows about dynamically deforming geometries. This includes relative mo-

tion between surfaces as well as deformations caused due to aeroelastic effects. The code contains a

number of implicit algorithms and a number of turbulence models. It handles complex geometries

using patched grids and the Chimera overset grid topology.

The diffusive fluxes of the mean-flow equations and of the turbulence model equation are dis-

cretized using second-order central differencing based on a full-viscous stencil. The convective

flux vector of the mean-flow equations may be approximated by second-order central differencing

via the Beam & Warming algorithm or by upwind schemes such as the flux vector splitting by

Steger-Warming or by an approximate Riemann solver such as the HLLC [6] and the AUSM+-up

scheme [7]. The left and right states of the approximate Riemann solvers are evaluated using a third-

order biased MUSCL scheme. The convective flux of the turbulence model is approximated by the

HLLC scheme based on the passive scalar approach using a third-order biased MUSCL scheme. The

code provides the choice between various implicit time marching schemes for the mean-flow equa-

tions, such as the AF-ADI method, the DDADI method [8], and the line Gauss-Seidel method. The

time marching scheme that is used for the turbulence models is the unconditionally positive-stable

scheme developed by Mor-Yossef and Levy [9, 10]. Second order temporal accuracy is achieved by

using dual-time stepping.

B. Aeroelastic Scheme

EZNSS solves the static or dynamic aeroelastic equation of motion (EOM) in modal coordinates.

The dynamic EOM reads:

[GM ]{ξ̈}+ [GK]{ξ} − {GFA(t)} = 0 (8)
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and the static EOM reads:

[GK]{ξ} − {GFA(t)} = 0 (9)

where {ξ} is the vector of modal deformations, [GM ] and [GK] are the generalized mass and

stiffness matrices, respectively, and {GFA(t)} is the generalized aerodynamic force vector. The

latter is calculated as:

{GFA(t)} = [ΦA]{FA(t)} (10)

where {FA(t)} is the vector of aerodynamic forces provided at the computational surface mesh, and

[ΦA] is the modal matrix, in which each column holds a structural elastic mode, mapped to the

computational surface mesh. The generalized mass and stiffness matrices and the modes matrix are

generated by a finite-element code and provided as inputs to the aeroelastic simulation. A spline

routine, based on the Infinite Plate Spline (IPS) [11] and beam spline algorithms, is used to map

the modes from the finite-element nodes in which they are computed to the CFD surface mesh.

In the dynamic aeroelastic case, the aeroelastic EOM is solved for the generalized displacements

following each CFD iteration. In the static case, the static aeroelastic EOM is solved following a

user-defined number of CFD iterations, typically in the order of 100. This leads to an efficient

aeroelastic scheme in which the elastic shape and the flow solution converge concurrently, while

applying only a small number of elastic shape updates. The block-diagram describing the elastic

solution procedure is presented in Ref. [12].

Following each solution of the static aeroelastic EOM, the generalized deformations are used to

compute the displacements at the computational surface grids, {uA}, according to:

{uA} = [ΦA]{ξ} (11)

which are then mapped to the whole volume grid using a shearing method [12, 13].

IV. Results and Discussion

A. Benchmark Supercritical Wing (BSCW) Configuration

Flow simulations were conducted at a Mach number of M∞ = 0.85, an angle of attack of α = 5◦,

and at a reference Reynolds number of Re∞ = 4.49× 106. The test medium in this case is R-134a
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and therefore the gas constant γ has been set to 1.116. Two geometry flow models were studied in

the present work. In both models, the wind tunnel walls were not modeled and it was assumed that

the wing is placed in free-air conditions (with the appropriate experimental flow conditions). The

difference between the two flow models lies in the treatment of the large splitter plate (see Figure 1).

The first flow model, termed hereafter configuration 1, ignores the presence of the large splitter plate,

and the computational mesh plane at the wing root (which lies in the same plane as the splitter) is

modeled as an inviscid impermeable wall. The second flow model, termed hereafter configuration 2,

models the splitter that is considered a viscous wall. It should be noted that configuration 1 follows

the gridding guidelines of the first Aeroelastic Prediction Workshop [1], while configuration 2 does

not. The AUSM+-up scheme [7] was used to approximate the mean-flow convective flux.

1. Configuration 1 Simulations

Two computational meshes of a C-O type were studied. A coarse grid with the dimensions

of 253 × 71 × 99 in the chord-wise, span-wise, and perpendicular directions, respectively, and a

medium mesh of dimensions 361× 110× 138 (see Figure 3). For both meshes the far field extends

approximately 90 chords away from the wing surface. The first grid point neighboring the wing

surface is placed at a distance of 6 × 10−6 wing chords, and 4 × 10−6 wing chords, for the coarse

and medium grids, respectively. The simulations were conducted using the RSM -ω, the SA-EC,

and the k-ω-TNT turbulence models.

a) b)

Fig. 3: BSCW configuration 1 computational mesh; a) coarse grid, b) medium grid
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Using the coarse grid, only the k-ω-TNT model reached a converged steady state solution in

terms of residual reduction (more than seven orders of magnitude reduction) and aerodynamics

forces. The other models did not converge, neither in terms of residual nor in terms of aerody-

namic forces, and the flow field exhibited some unsteadiness. Using the medium grid, none of the

simulations of the three turbulence models reached a converged solution. The k-ω-TNT resulted

in fluctuations of the force coefficients that are of high-frequency and very low-amplitude about a

steady condition. For any practical purpose, the force coefficients can be considered to be steady.

Time-accurate simulation that were conducted with this model showed no change in the aerody-

namics forces.

Figure 4 shows the surface pressure coefficient from the steady simulations using the coarse

mesh. A clear difference between the computed results of the span-wise pressure distribution is

evident. Using the k-ω-TNT model, the span-wise pressure distribution is nearly uniform from the

wing root up to a certain span-wise location toward the wing tip, where downwash effects prevail.

On the other-hand, using the SA-EC and the RSM -ω models, the span-wise pressure distribution

is non-uniform near the wing root. The reason is that at the wing root these two models predict a

stronger separation as compared to the separation predicted by the k-ω-TNT model (not shown).

The non-uniform pressure distributions are due to transverse pressure waves, originating from the

wing root.

To examine the flow unsteadiness, time-accurate simulations were performed using second-order

time accuracy with a normalized physical time step of ∆t = 0.01. At each physical time step twenty

sub iterations were used, resulting in a three to four orders of magnitude residual reduction. The

initial solutions that were used for the time accurate simulations were the final solutions obtained

from the steady flow simulations. The time-accurate results include the SA-EC model computation

using the coarse and medium grids, and the computation from RSM -ω model using the coarse grid.

Figure 5 shows the time history of the lift coefficient. While the results from the RSM -ω model

show a clear unsteady flow, the results from the SA-EC model exhibit a strong decaying oscillation

using the coarse grid. On the other hand, the results from the SA-EC model, using the medium

grid, display a clear unsteady flow. This behavior of the lift coefficient obtained from the SA-EC
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(a) k-ω-TNT

(b) SA-EC

(c) RSM -ω

Fig. 4: BSCW surface pressure map using the coarse mesh from the steady-state simulations
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model is not fully clear and is left for future study.

0 10000 20000 30000
Number of Physical Time Steps

0.25

0.35

0.45

0.55

0.65

C
l

SA−EC (coarse)

RSM−W (coarse)

SA−EC (medium)

Fig. 5: Lift coefficient time history

A comparison of the computed surface pressure distribution with experimental results at the

span-wise station y/b = 0.60 is shown in Figure 6. The results of the SA-EC model using the coarse

grid are from the end of the time-accurate simulation, where the flow has reached a steady state.

The results of the SA-EC model using the medium grid are based on time average over the last six

flow cycles. The results of the RSM -ω model using the coarse grid are based on time average over

the last four flow cycles.

It is clear from Figure 6 that the flow prediction based on the k-ω-TNT model, is nearly identical

for both the coarse and medium grids. The prediction of the upper shock position is downstream

by approximately 10% wing chord. Moreover, the flow recovery past the shock is poorly predicted,

especially on the lower wing surface. The shock prediction based on the SA-EC model using the

coarse grid is similar to the results obtained by the k-ω-TNT model. The time-averaged solution

based on the SA-EC model, using the medium grid, is in better agreement with the experimental

data in terms of shock position. Still, the flow recovery prediction remains in poor agreement

with the experimental results. The upper shock prediction using the RSM -ω model shows an

opposite trend to the linear turbulence models. While the linear model predicts the shock location

downstream compared to the experiment, the RSM -ω model predicts the shock location upstream

as compared to the experimental results. The flow recovery is better predicted by the RSM -ω
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0.5
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−
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Exp. lower surf.

Exp. upper surf.

EZNSS medium mesh

EZNSS coarse mesh

(a) k-ω-TNT

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−
C

p

 

 

Exp. lower surf.

Exp. upper surf.

EZNSS coarse mesh

EZNSS medium mesh − time avaraged

(b) SA-EC

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−
C

p

 

 

Exp. lower surf.
Exp. upper surf.
EZNSS coarse mesh

(c) RSM -ω

Fig. 6: Comparison of the BSCW surface pressure coefficient at the spwanwise station y/b = 0.6
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model, especially on the lower wing surface.

2. Configuration 2 Simulations

A single Chimera computational mesh was used to study configuration 2. The mesh is composed

of the world block, the splitter plate block and the wing mesh. The world block has the dimensions

of 135 × 101 × 151 and extends 100 wing chords in all directions. The splitter plate block has

the dimensions of 185 × 151 × 151 and is extended six wing chords in the direction of the splitter

normal. The wing mesh is based on the coarse mesh that was used in configuration 1. The wing

computational mesh was modified only in the region near the wing root, in the span-wise direction,

to adjust the mesh to viscous flow conditions. The grid spacing in the two other directions was kept

identical to configuration 1. The wing mesh has the dimensions of 253×127×75 (only 75 grid point

out a total 91 grid points in the normal direction were used). The wing mesh is embedded in the

splitter block and the splitter block is embedded in the world block (see Figure 7). It is noted that

the splitter is modeled as a flat plate with zero thickness. Moreover, the world plane mesh that lies

in the wing root is treated as impermeable inviscid wall. For the study of configuration 2 only the

SA-EC and RSM -ω models were used.

a) b)

Fig. 7: BSCW configuration 2 computational mesh;

Based on the aerodynamic force coefficients history, the simulations reached a steady state

solution. Figure 8 shows the surface pressure coefficient obtained from the steady-state simulation.

Excluding the wing root region and the wing tip region, there is a certain similarity between the

13

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
an

gl
ey

 R
es

ea
rc

h 
C

en
te

r 
on

 F
eb

ru
ar

y 
25

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

78
7 



two solutions in terms of shock front. It was found that a forward shock position is accompanied by

strong flow separation behind the shock. Moving toward the wing tip the flow becomes attached.

(a) SA-EC (b) RSM -ω

Fig. 8: BSCW surface pressure map from configuration 2 study

A comparison of the computed surface pressure distribution with experimental results at span-

wise station y/b = 0.60 is shown in Figure 9. Overall, the results form configuration 2 study are

in better agreement with the experimental data. Especially, the SA-EC model flow prediction was

improved in terms of shock position and the flow recovery past the shock on the wing upper surface.

The flow recovery behind the shock on the lower surface still remains in poor agreement with the

experimental data.
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Fig. 9: Comparison of the BSCW surface pressure coefficient at the span-wise station y/b = 0.6

obtained form configuration 2 study

B. High Reynolds Number Aero-Structural Dynamics (HIRENASD) Configuration

The computational mesh for the HIRENASD configuration is shown in Figure 10. It has grid

zones for the wing, fuselage, a "world" zone, and a collar zone for matching flow conditions between

the fuselage and wing zones. With a total of about twelve million grid points this mesh corresponds

to the AePW definition of a medium mesh. Flow simulations were conducted using the HLLC

scheme and the SA-EC turbulence model.

Static modal aeroelastic analysis is based on thirty modes of the wing only. The mode shapes,

computed by MSC/Nastran modal analysis, were provided at 176 nodes along the wing, and mapped

to the computational surface mesh. Figure 11 presents the first two elastic modes, on the computa-

tional surface mesh.

Static aeroelastic analysis was conducted at the flow conditions detailed in Table 1. Figures 12

- 14 present sectional surface pressure coefficient at seven span-wise sections, comparing wind-tunnel

data and simulations. The computed and the wind tunnel surface pressure coefficien values are in

good agreement for the ETW 250 case, as shown in Figure 12. For the ETW 132 and 129 cases

there is a good match on the lower surface, and somewhat less good match on the upper surface.
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(a) World

(b) Wing (c) Fuselage

Fig. 10: HIRENASD computational mesh

Figures 15 and 16 show the transfer function (in terms of magnitude and phase angle) of the

sectional Cp distributions in response to prescribed modal motion of the second bending mode at

R∞ = 7 × 106, M = 0.8, about a mean angle of attack of α = 1.5◦, and at dynamic pressure of

q = 40055Pa (ETW 159). The frequency of the prescribed motion is 78.9Hz (corresponding to the

natural frequency of the second bending mode), and the excitation amplitude at the reference point

(x = 0.873, y = 1.247) is 2.4mm. The later corresponds to a modal amplitude of 0.006 of the second

mode. The analysis was performed using a dimensional time step of 5 × 10−5sec, which results

in about 250 time steps per cycle. The results below are based on analysis of 1500 time steps (6

cycles). Figures 15 and 16 show a reasonable agreement between the computed and wind-tunnel

data. The computed magnitude of the transfer function is larger than the wind tunnel values on

the upper surface for all sections. In general, the agreement is better for the lower surface than for
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(a) Mode 1 (b) Mode 2

Fig. 11: HIRENASD first two elastic modes, mapped to the computational surface mesh

the upper surface.

ETW Set R∞ × 10−6 M α[◦] q[Pa]

250 23.5 0.8 -1.34 88697

132 7 0.8 1.5 40055

129 7 0.7 1.5 36177

Table 1: HIRENASD flow conditions for static analysis
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Fig. 12: HIRENASD sectional Cp; R∞ = 23.5× 106, M = 0.8, α = −1.34◦, q = 88697Pa, ETW

250

18

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
an

gl
ey

 R
es

ea
rc

h 
C

en
te

r 
on

 F
eb

ru
ar

y 
25

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

78
7 



0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x/c

C
p

(a) station 1, η = 0.145

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x/c

C
p

(b) station 2, η = 0.323

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x/c

C
p

(c) station 3, η = 0.456

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x/c

C
p

(d) station 4, η = 0.589

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/c

C
p

(e) station 5, η = 0.655

0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x/c

C
p

(f) station 6, η = 0.804

0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/c

C
p

 

 
Exp. upper surf.
Exp. lower surf.
EZNSS simulation

(g) station 7, η = 0.953

Fig. 13: HIRENASD sectional Cp; R∞ = 7× 106, M = 0.8, α = 1.5◦, q = 40055Pa, ETW 132
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Fig. 14: HIRENASD sectional Cp; R∞ = 7× 106, M = 0.7, α = 1.5◦, q = 36177Pa, ETW 129
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Fig. 15: HIRENASD Cp response to prescribed excitation - magnitude; R∞ = 7× 106, M = 0.8,

α = 1.5◦, q = 40055Pa, ETW 159
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Fig. 16: HIRENASD Cp response to prescribed excitation - phase; R∞ = 7× 106, M = 0.8,

α = 1.5◦, q = 40055Pa, ETW 159
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V. Summary

Numerical simulations were performed with the EZNSS flow solver for the first NASA Langley

Aeroelastic Prediction Workshop. Two configurations were studied, the Benchmark Supercritical

Wing (BSCW) and the High Reynolds Number Aerostructural Dynamics (HIRENASD) model. Two

geometrical configurations of the BSCW were examined and 3 turbulence models were utilized.All of

the models predicted the shock location within 10% chords of its wind-tunnel location. None of the

models predicted accurately the pressure recovery behind the shock on the upper and lower surfaces.

While some turbulence models and computational setups resulted in a steady flow, some predicted

flow unsteadiness, with fluctuations of the shock position and of the aerodynamic coefficient values.

This may indicate that the case of the BSCW wing, at the studied flow conditions, is on the verge

of buffet instability. A grid study, using a coarse and medium meshes, showed that the results are

sensitive to the grid density. Another configuration introduced a viscously modeled splitter plate,

which appears to somewhat improve the pressure distribution prediction.

The HIRENASD wing was studied for its elastic deformations and associated pressure coefficient

distribution at three flow conditions of various Reynolds numbers, Mach numbers, and mean angle

of attack. All of the studied flow conditions resulted in good correlation between the computed

and experimental pressure coefficient data. The HIRENASD wing was also excited at its second-

bending mode. The transfer function between the pressure coefficient distribution at different span-

wise sections and the amplitude of motion of a reference point was computed and compared to

experimental data. A fair comparison was demonstrated.

Overall, it appears that the numerical simulations predicted well the transonic static aeroelastic

response and the response to forced excitation in cases of attached flows. The transonic cases of

detached flows behind a shock were found to be highly sensitive to the numerical parameters of the

simulation, especially the turbulence model used. Due to these observations, and due to the lack

of experimental data on three-dimensional wing in buffet conditions, it is recommended that one of

the next Aeroelastic Prediction Workshops will target shock buffet experiments and simulations.
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