

AIAA 2001-4006

The Impact of Structural Vibration on Flying Qualities of a High Speed Civil Transport

David L. Raney, E. Bruce Jackson, Carey S. Buttrill, William M. Adams NASA Langley Research Center Hampton, VA

NASA Aeroservoelastic Real-Time Simulation Workshop 18-19 April 2012

Originally presented at:

AIAA Atmospheric Flight Mechanics Conference 6-9 August 2001 Montreal, Canada

HSCT Size + Slenderness = Aeroelastic Problems

- HSCT is ~ 330 ft long with first elastic mode frequency of 1.25-1.45 Hz; typical subsonic transport is twice that.
- Simulations suggest that active structural control will be required for acceptable flying and ground handling qualities.
 - » Vibration environment at pilot station is dramatic

Approach & Objectives

- Parameterize Aeroelastic Model: Directly manipulate model's dynamic characteristics to approximate the effect of various means of dealing with DASE*
 - » Structural stiffening, Active mode suppression
- Perform piloted evaluation maneuvers in simulator
 - » Collect pilot ratings, cockpit vibration data, and simulation time histories for each parametric configuration
- Examine effectiveness of various means of addressing DASE
 - » Generate design insights
 - » Prescribe damping objectives for active mode control

Langley Research Center

*DASE: Dynamic AeroServoElasticity

HSCT Real-Time Dynamic Aeroelastic Model

- 3 Symmetric + 3 Antisymmetric Modes
- Parameterized Modal Frequencies & Damping
- Turbulence Inputs + Control Effector Inputs
- Attitude Perturbations Represented in Visual Cues

Potential Solutions to Examine using Parameterized Model

Langley Research Center

Variation of Structural Stiffness

Configuration	Frequency	Stiffness	1st SY Mode	
	Ratio	Increase	Frequency	
baseline	1.00		1.25 Hz	
stif1	1.16	~35%	1.45 Hz	
stif2	1.36	~85%	1.80 Hz	
stif3	1.60	~150%	2.00 Hz	

- Directly manipulate model to simulate frequency increases due to stiffer structure
- All structural modes are lightly damped
- No consideration of associated weight penalties

Variation of Modal Damping

Examine effect of Damping Level, Frequency Range, Symmetric vs Antisymmetric

Configuration	Damping Ratio	Modes
stif1	nominal	
damp1	0.07	SY1, AN1
damp2	0.15	SY1, AN1
damp3	0.30	SY1, AN1
damp4	0.30	SY1
damp5	0.30	AN1
damp6	0.07	SY1-2, AN1-2
damp7	0.15	SY1-2, AN1-2
damp8	0.30	SY1-2, AN1-2
damp9	0.30	SY1-2
damp10	0.30	AN1-2

Impact of Modal Cancellation*

- Examine effect of Cancellation at each Damping Level
 - » *Cancellation: Eliminate control effector excitation of 1st SY & 1st AN modes
 - » Probably requires distributed effectors: canard and chin fin

Langley Research Center

NASA LaRC Visual Motion Simulator (VMS)

Acceleration Capabilities (Single-Axis)

Surge: <u>+</u>0.6g Sway: <u>+</u>0.6g Heave: <u>+</u>0.8g Roll: <u>+</u> 50 deg/s ² Pitch: <u>+</u> 50 deg/s ² Yaw: <u>+</u> 50 deg/s ²

Cooper-Harper Rating Scale

High Speed Research

Control Influence Rating Scale

DASE INFLUENCE ON PILOT'S CONTROL INPUTS	CIR	
Pilot does not alter control inputs as a result of aircraft flexibility.	1	
Pilot intentionally modifies control inputs to avoid excitation of flexible modes.	2	
Cockpit vibrations impact precision of voluntary control inputs.	3	
Cockpit vibrations cause occasional involuntary control inputs.	4	
Cockpit vibrations cause frequent involuntary control inputs.	5	
Cockpit vibrations cause sustained involun- tary control inputs or loss of control.	6	

CIR targets voluntary/ involuntary modification of pilot's control inputs due to cockpit vibration

- Acceptable No Improvement Necessary
- □ Marginal Improvement Desired/Warranted
- Unacceptable Improvement Required/Mandatory

DA

Cockpit vibration quality.

Cockpit vibration objectionable -

Cockpit vibration

Cockpit vibration objectionable -

Cockpit vibratio

Cockpit vibration of task - improvided improvements of task - improv

Ride Quality Rating Scale

CIR	DASE INFLUENCE ON RIDE QUALITY	RQR	
1	Cockpit vibrations do not impact ride quality.	1	
2	Cockpit vibrations are perceptible but not objectionable - no improvement necessary.	2	
3	Cockpit vibrations are mildly objectionable - improvement desired.	3	
4	Cockpit vibrations are moderately objectionable - improvement warranted.	4	
5	Cockpit vibrations are highly objectionable - improvement required.	5	
6	Cockpit vibrations cause abandonment of task - improvement required.	6	

RQR targets degradation of general comfort level due to cockpit vibration

- Acceptable No Improvement Necessary
- Marginal Improvement Desired/Warranted
- Unacceptable Improvement Required/Mandatory

Evaluation Maneuvers

- 1) Straight-in (Nominal) Approach and Landing
- 2) Offset Approach and Landing
- 3) Composite Flight Director Tracking Task

- (2) and (3) were fairly aggressive, high-gain tasks
- Six evaluation pilots participated representing NASA (2), Calspan (1), FAA (1), Boeing Seattle & Longbeach (2)

Configuration Descriptions Ranked in Order of Pilot Preference Based on Average of DASE Ratings

Control Influence Ratings vs Pilot Preference

Best Pilot Preference Ranking

Worst

- Subjective measure of acceptability based on pilots' assessment of vibration impact on manual control inputs
- Pilots were sometimes unaware of input contamination due to cockpit vibrations -> CIR assessments may be optimistic

Example of Biodynamic Coupling Incident

Video of Biodynamic Coupling Incidents

Langley Research Center

Concluding Remarks

- At least 3 of the 6 pilots encountered BDC at some point in the experiment
 - » Triggered by high-gain maneuvering (firm grip on stick is a crucial ingredient)
 - » Always dangerous, sometimes catastrophic (not just an annoyance)
 - » Influenced by inceptor design, control law design, piloting style & physical characteristics
 - Aileron-Rudder Interconnect (ARI) is implicated in coupling
 - » No BDC events were observed when modal damping was ≥ 0.15
- Some provision must be made to ensure that BDC never occurs
 - » Flight-critical mode suppression?

Langley Research Center

Concluding Remarks (continued)

- Antisymmetric modes were highly problematic
 - » Symmetric (longitudinal) mode suppression not sufficient
- Structural Stiffening and Display Compensation did not appear to solve problem
- Damping and Modal Cancellation were both highly beneficial
- Design Insights
 - » Use Filtered Air Data "noisy" surface deflections will kill ride quality by exciting high frequency modes
 - » Watch Aileron/Rudder Interconnect (implicated in BDC)
 - » Minimal damping suggestions:
 - 0.3 nominal on 1st & 2nd AN and 1st & 2nd SY modes
 - 0.15 reversion (failure) or other measures sufficient to prevent BDC; Prioritize AN over SY if necessary

Additional Charts

Data Collected

- » Videotape of cockpit and pilot's hand on control stick
- » Time history data of all relevant flight dynamic simulation parameters
- » Transcribed micro-cassette recordings of pilot comments immediately following flights

Quantitative Evaluation Measures

- » Touchdown dispersions and sink rates
- » Flight director tracking tolerances
- » Spectral analysis of pilot stick inputs

Subjective Evaluation Measures

- » Cooper-Harper Flying Qualities Ratings (CHR)
- » "Ride Quality Rating" (RQR) identifies DASE influence on comfort & ride quality
- » "Control Influence Rating" (CIR) identifies voluntary/ involuntary (biodynamic) modification of pilot's control inputs
- » Pilot option for task abandonment (pilot discomfort, imminent loss of control)

Ride Quality Ratings vs Pilot Preference

- Subjective measure of acceptability based on pilots' assessment of ride quality
- Tasks were performed in mild turbulence (σ = 3 ft/s)

DASE INFLUENCE ON PILOT'S CIB CIB DASE INFLUENCE ON

Pilot does not alter control inputs as a result of aircraft flexibility.	1	
Pilot intentionally modifies control inputs to avoid excitation of flexible modes.	2	
Cockpit vibrations impact precision of voluntary control inputs.	3	
Cockpit vibrations cause occasional involuntary control inputs.	4	
Cockpit vibrations cause frequent involuntary control inputs.	5	
Cockpit vibrations cause sustained involun- tary control inputs or loss of control.	6	

CONTROL INDUTS

Cockpit vibrations do not impact ride quality.	1	
Cockpit vibrations are perceptible but not objectionable - no improvement necessary.	2	
Cockpit vibrations are mildly objectionable - improvement desired.	3	
Cockpit vibrations are moderately objectionable - improvement warranted.	4	
Cockpit vibrations are highly objectionable - improvement required.	5	
Cockpit vibrations cause abandonment of task - improvement required.	6	

RQR

Acceptable - No Improvement Necessary
Marginal - Improvement Desired/Warranted
Unacceptable - Improvement Required/Mandatory

- Targets pilot's perception of dynamic aeroelastic effects
- Supplements CHR (Discriminates SCAS deficiencies from DASE effects)
- "Control Influence Rating" (CIR) identifies voluntary/ involuntary (biodynamic) modification of pilot's control inputs
- "Ride Quality Rating" (RQR) identifies DASE influence on comfort & ride quality

Pilot option for task abandonment (pilot discomfort, imminent loss of control)

Biodynamic Coupling Incidents for 3 Pilots