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Abstract This paper describes the results of a novel flights that are anomalous or atypical. Task b) is impor-
research and development effort conducted at the tant as each flight generates large amounts of data during
NASA Ames Research Center for discovering anoma- its course, and simply identifying a flight as anomalous
lies in discrete parameter sequences recorded from flight still leaves the problem of identifying the problem areas
data 1 2.Many ofthe discrete parameters that are recorded inside the flight unaddressed.
during the flight of a commercial airliner correspond to
binary switches inside the cockpit. The inputs to our sys- We treat the problem of finding atypical flights as an un-
tem are records from thousands offlights for a given class supervised learning problem. We first cluster the flights
of aircraft and destination. The system delivers a list of for each itinerary into groups, and identify the outliers in
potentially anomalous flights as well as reasons why the each cluster as atypical. We use the Longest Common
flight was tagged as anomalous. This output can be an- Subsequence, a common measure in bioinformatics and
alyzed by safety experts to determine whether or not the Intrusion Detection systems, as the similarity measure
anomalies are indicative of a problem that could be ad- for clustering flight data. We then present two new al-
dressed with a human factors intervention. The final goal gorithms that use Bayesian Networks to efficiently iden-
ofthe system is to help safety experts discover significant tify anomalous events during the course ofthe flight. We
human factors issues such as pilot mode confusion, i.e., a demonstrate the performance of these algorithms using
flight in which a pilot has lost situational awareness as re- operation information from about 10,000 flights, and de-
flected in atypicality of the sequence of switches that he veloping the base clusters and locating anomalous flights
or she throws during descent compared to a population of by using these sequences.
similar flights. We view this work as an extension of In-
tegrated System Health Management (ISHM) where the Sequence analysis is an active and much-studied area in
goal is to understand and evaluate the combined health computer science. Some areas where sequence analy-
of a class of aircraft at a given destination. sis algorithms are prominent are anomaly-based intru-

sion detection in computer system/network, and in bioin-
formatics. The problem of anomaly detection in aircraft

1. INTRODUCTION data, in fact, has many similarities to the problems ofnet-
work intrusion detection. Anomaly based network intru-

Previous approaches to the task of anomaly detection fo- sion detection techniques work by forming some sort of
cus on continuous sensor data [2], and do not distinguish model of what constitutes normal activity in a network.
discrete sensors from continuous, thus disregarding the Any deviation from this normal behavior is flagged as
non-continuous as well as the sequential nature of the anomalous. Our approach to the problem of anomaly
discrete sensors. In comparison, we focus on discrete detection in aircraft data has similarities to the work of
sensors, specifically, sensors recording pilot actions, or Sequeira and Zaki [3], in that both use sequence analysis
switches. We are interested in the sequence in which the based methods, though there are significant differences
values for these sensors change during the course of a in detail.
flight and finding anomalies in flight behavior based on
this information.

2. DATA DESCRIPTION AND
Our system performs two tasks, as part of the task of PREPROCESSING
atypical events detection in flights: a) detection of atyp- The flight data the prototype system was implemented
ical flights, b) finding events during the course of such over was derived from binary sensors in the aircraft dur-

ing the landing phase of 6400 flights. All of these flight1007803 9546 8/06/$20 000g2006 IEEE has the same destination airport. The data was stored as
2This work was supported by the NASA Aviation Safety Program, arx hr stenme fdsic
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observations for the sensors, N is the number of sensors, lous still leaves a lot of information to be processed by
and F is the number of flights. So, we had a T x N the analyst, to identify why this particular flight was con-
matrix for each flight. This matrix was reduced to a one- sidered anomalous. The aim ofthis step ofthe processing
dimensional sequence as follows: was to automate this task as far as possible.

1. The initial value of each sensor was assumed to be We provide an informal introduction to these algorithms
zero. in the following pages. The complete details of these al-
2. At any time-step t, only the sensors that show a tran-
sition in value, were recorded in the final sequence.g

The above transformation gave us a dataset consisting of 4. THE NORMALIZED LONGEST COMMON
6400 sequences, with sequence lengths varying over a SUBSEQUENCE MEASURE
wide range, between 600 and 9000 characters. Follow-
ing this, we performed another reduction step, where all The Longest Common Subsequence(LCS) is a common
sensors that changed values an average of thirty or more measure for comparing two sequences. Some common
times were removed from the sequences. This was done domains of application are bioinformatics, for compar-
with the assumption that sensors that changed values so ing genome or protein sequences, and in computer sys-
frequently were not recording pilot actions, but aircraft tem/network intrusion detection systems [3], for compar-
system response to pilot actions. This reduced the se- ing user access patterns.
quence lengths further. Figure 1 contains a histogram
describing the distribution of the new sequence lengths. Given two sequences A and B, B is a subsequence of A
As the figure shows, around 4000 of the sequences are Of if removing some characters from removing some char-
lengths 0-500, another 1500 have lengths between 500 acters from A will produce B. For example, suppose se-
and 1000, while the rest have lengths between 1000 and quence A is given by 'abcdef', and sequence B is given
1600. by 'bce'. Then removing characters a, d and f from A

will produce B. Hence B is a subsequence of A.

3. OUTLINE OF APPROACH A sequence B is described as a common subsequence
of two sequences A and C, if removing some charac-

The main steps performed for detecting anomalies in the ters from both A and C will produce B. For example,
flight data were as follows: if a sequence C is given by 'gdbefce'. Then B('bce')

is a common subsequence of both C and A, as remov-
1. The sequences were clustered into groups/clusters. ing the characters at locations 1,2,4,5 from sequence C
The sequences inside each cluster were more similar to will give B, and removing characters at locations 1,4,6
each other than to sequences in other clusters. The simi- from sequence A will give sequence B. The longest such
larity measure used was the normalized longest common subsequence between two given sequences is called the
subsequence. The next section presents a detailed dis- longest common subsequence.
cussion of the similarity measure.

Other measures used for comparing sequences include
2. A certain percentage of the sequences in each clus- the 'Match Count Polynomial Bound'(MCP), and its
ter were identified as atypical, for further investigation. variants. A detailed discussion of these measures, and
The sequences picked were the sequences which had the a comparison with LCS, can be found in [1]. However,
lowest similarity score with the most central sequence in LCS differs from these measures mainly in that the MCP
each cluster(the most central sequence for each cluster is family of measures does a one-to-one comparison of se-
identified during the clustering step described above). quences. For example, given two sequence A='abce'

and B='bcde', the MCP similarity would be 1, as MCP
3. We analyzed each atypical sequence for anomalies. counts exact 1-1 location matches, which in the above
New algorithms were developed as part of this stage, case is only for 'e' in the fourth location. However, the
which performed a weighted comparison of the atypical length of the LCS in the above case is 3('bce'). Thus,
sequence with the other sequences in the cluster, with the the advantage ofusing the LCS measure is that it detects
aim of discovering the significant differences between similarities between two sequences even if they are out
the other sequences in the cluster and the atypical se- of 'phase'.
quence being analyzed. This was an important step ofthe
analysis as simply classifying a certain flight as anoma- Due to the varying lengths of the flight sequences, we
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4500 2. IfXmx 4 yn then Zk 75 xm implies that Z is an LCS of
4000 XT 1andY.

3. If xn 54 yn then Zk f Yn implies that Z is an LCS of
3500 X and Yn1.

3000

2500 This property is used to construct a dynamic program-
0n 111111111 ming algorithm to find the LCS. More information on

2000 this algorithm can be found in [4]. An alternate approach
1500 is the Hunt-Szymanski algorithm [5]. However, both al-

gorithms are expensive and take a long time to compute
1000 _ the LCS, especially as the sequence length increases, a

common reason due to which the LCS is not used as a
500 _

similarity measure in practice. As part of the project, we
0 200 400 600 800 1000 1200 1400 1600 developed a new hybrid algorithm that used ideas from

Sequence Lengths both the approaches mentioned above, to calculate the
Figure 1. Histogram showing distribution of flight se- LCS. Our new LCS algorithm was upto five times faster
quence lengths. than the current algorithms. This enabled us to cluster the

sequences data many times faster than current algorithms
are capable of. More information on our new hybrid al-

normalize the LCS value. We call the normalized value gorithm for calculating the LCS can be found in [8].
the normalized Longest Common Subsequence score, or
nLCS. Given two sequences S1 and S2, the formula to
calculate the nLCS is given by: 5. CLUSTERING AND OUTLIER DETECTION

The flight sequences were clustered using a k-medoids
algorithm called CLARA (Clustering LARge Applica-

nLOS length(LCS) tions) [6], [7]. CLARA is a modified version ofthe PAM
>,/length(Si) length(S2) (Partitioning Around Medoids) [6] algorithm. Given a

value of k for a dataset, PAM finds k clusters in the
For example, letA = 'abcdefg'. Let B = 'fbdfeacg'. Then dataset. It finds the clusters by finding a representative
the LCS is given by 'bdeg', and the length of the LCS data point for each cluster. For each cluster, the represen-
4. Then tative point, called the medoid, is the most central point

in the cluster, or, the point which has the highest aver-
age similarity compared to all other points in the cluster.

4 Given the medoids, the clusters can be found as follows:
nLCS assign each data point to the medoid with which it gives

V6__-8 the highest similarity score. Hence, to calculate the clus-
ters, it is sufficient to calculate the medoids.

- 0.58
PAM finds the medoids that would maximize the qual-
ity of a clustering, that is, medoids for which the average

However, the nLCS is a difficult and computationally ex- similarity of each medoid with its respective cluster is
pensive measure to compute. This is because there is maximum overall. However, PAM is a computationally
no fast method to find the LCS between two sequences. expensive algorithm. CLARA tries to cut down on the
The classical approach is to use the optimal substructure time taken for computation by randomly picking a data
property of the Longest Common Subsequence. This subsample from the dataset, and finding the medoids for
property is given as follows: this subsample. The medoids selected for this subsample

are then treated as medoids for the entire cluster. The in-
Let X < Xi, X2, , Xm > and Y = < tuition behind CLARA is that if the subsample is picked
Yi, Y2, ,Yn > be two sequences. Let the LCS be with sufficient randomness, it will mimic the original
given by Z =< Zi, Z2, . .. , zk >. Then dataset in its distribution, and the medoids for the sub-

sample shall be sufficiently close to the original dataset.
1. IfXm =Yn Zkc Xm =Yn and Zk-l is the LCS of
Xmi1 and Yn-l Table 1 summarizes the results of clustering on the test
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Table 1. Results of clustering on the test dataset of 6400 flights. Clustering yielded one large and one medium-sized
cluster(clusters 1 and 2) with high average similarity, and one small cluster with low average similarity(cluster 3).

Cluster Count Cluster Size Percentage of total cluster Mean Similarity(nLCS) Median Similarity(nLCS)
1 3301 52% 0.72 0.75
2 2253 35% 0.71 0.71
3 846 13% 0.55 0.55

dataset of 6400 flights. Three clusters were discovered to detect can be divided into three categories:
in the data. The largest cluster contained around 52%
of the flights, and had a high average similarity of 0.72. 1. A sequence of switches are normally flipped at the
The second cluster contained around 35% of the flights current stage in flight, but were not flipped.
and had a high average similarity of 0.71 . The above in- 2. A sequence of switches are normally not flipped at the
formation suggests that at least 70% of the switches are current stage in flight, but were flipped.
flipped in the same order in most flights, as the nLCS 3. A sequence of switches were flipped in the wrong or-
measures the degree to which two sequences follow the der.
same order. This is interesting, and suggests that se-
quence analysis techniques are suitable for the task of The algorithms understand these events in terms of in-
comparing and discovering anomalies in flight switch sertions and deletions. For example, if a sequence of
data. switches is normally not flipped at the given stage of

flight, but was flipped for a particular anomalous flight,
The third cluster was very small in compar1son to the the algorithms suggest that these switches should be
first two clusters, containing only around 130% ofthe total deleted from the flight to make it more normal. Similarly,
flights and had a low overall similarity score, of 0.55. if some switches should have been flipped, but were not
There is a strong possibility that the small cluster consists flipped, the algorithms suggest that these switches be in-
largely of anomalous flights, though more investigation serted into the flight to make it more normal. Note that
into the operational significance of these clusters needs Case 3, where switches are flipped in the wrong order,
to be done to establish this. is simply a combination of insertions and deletions. For

example, if we have a switch sequence ABC, when the
Following the clustering step, a certain percentage of the normal sequence for pressing these switches is ACB, the
flights from each cluster, that were farthest from the clus- algorithms will suggest that the switch C be deleted from
ter centre(medoid), were classified as atypical for further its current location, and be instered in front of switch B.
investigation. The next section describes methods for de- i ne together, theset sstions gv swth in

tectig anmalieinsde thse aypica flihts.Combined together, these two suggestions give us the in-tecting anomalies inside these atypical flights, formation that the switches were pressed in the wrong
order.

6. DETECTING ANOMALOUS EVENTS IN We developed two algorithms for anomaly detection: a)
ATYPICAL FLIGHTS an 'insertion algorithm' that predicts desirable insertions

In the previous section, we described our approach to- in the atypical sequence, covering Type 1 in the three
wards finding flights that are atypical and contained events described above, and b) a 'deletion algorithm' that
events that did not follow established patterns. However, predicts desirable insertions into the atypical sequence,
it is not sufficient to detect flights with anomalies, as this covering Type 2 of events. Type 3 of anomalous events
still leaves a lot of information to be analysed, to iden- are covered by the insertion and deletion algorithms in
tify what the exact events were. In this section we dis- tandem.
cuss the anomaly detection algorithms we designed, that
are able to identify anomalous events inside a flight se- We again utilize the Longest Common Subsequence to
quence, thereby automating this step to a great extent. find the desirable insertions and deletions into the atypi-
These algorithms identify any unusual event as anoma- cal sequence. This is because, the common subsequence
lous. No operational information is currently used for between two sequences gives us the areas of the two se-
this step. quences which follow the same order. If there are re-

gions inside a sequence that are not part of the longest
The type of anomalous events we expect the algorithms common subsequence with most or all of the sequences

in the cluster, it can only be because, a) they are in the
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wrong location compared to the rest of the flight, or b) Here, the first four switches match identically, but
they are in the wrong order. switches 103 and 107 are missing from the atypical se-

quence.
These ideas are formalized by constructing an objective
function to maximize for the atypical sequence, and then In this case, the insertion algorithm will suggest that
identifying insertions and deletions to the sequence that switches 103 and 107 be inserted after switch 105 at lo-
will maximize this function. Intuitively, the objective cation 4, in the atypical sequence. Importantly, it will not
function is a measure of how similar the atypical se- suggest that switch 102 be inserted after switch 105, even
quence is to the cluster it occurs in, and one simple objec- though 102 also occurs after switch number 105, right af-
tive function could be the average nLCS similarity score ter location 2. It is able to avoid that confusion because it
of the atypical sequence with all the sequences in the established a longest common subsequence between the
cluster. We use a more sophisticated objective function, two sequences, which matches the 105s at location 2 in
where we model each cluster as a Bayesian Network. the two sequences.
The objective function, in that case, is the probability
of generation of the atypical sequence from this Net- Example 2: Switches normally not flipped at the stage
work. After the objective function has been defined, the offlight were flipped. Suppose we have the following
next step is to identify the insertions and deletions which switch sequence pattern as usual at a given stage:
would maximize the objective function. That is, intu-
itively, we identify the insertions and deletions which, if 101 105 102 105 106
made to the atypical sequence, would increase the simi-
larity of the atypical sequence with the cluster it belongs And the atypical sequence follows the following pattern:
to, or, in other words, make it less anomalous. These
changes are identified using a greedy algorithm which, 101 105 102 105 107 106
at each step, identifies the modification to the sequence
that would improve the score by the greatest margin. In this case, we have a 1-1 correspondence between the

first four switches in both sequences, and between the
We now provide some examples of the type of anoma- switch at location 5 in the first sequence, and the switch
lies that can be discovered by the algorithms. In these at location 6 in the second sequence. However, switch
examples we compare how the algorithms react given a number 107 does not match. In this case, the deletion
'usual' flight pattern and a new sequence that does not algorithm will suggest we delete the switch 107 from the
follow that pattern. However, it must be remembered that atypical(second) sequence.
the algorithms do not identify/generate any single flight
from the cluster as a 'usual' flight. Instead, they make Example 3: Switches wereflipped in the wrong order
a probabilistic comparison of the atypical sequence with
all the flights in the cluster. The 'usual' flight sequence, Let the usual pattern for switches be
in the discussion below, is just a concept constructed to
provide a more intuitive understanding of how the algo- 101 103 105 * 107
rithms operate.

Let the atypical sequence be
Example 1: Switches normally flipped at the stage of
flight were notflipped. 101 103 107 * 105

Suppose, at a given stage of flight, the usual flight switch Here the asterix(*) represents wildcards. That is, there
pattern is given as follows(here the numbers represent may be switches that are usually pressed between 105
different switches): and 107, but the fact that 107 is pressed after 105 remains

constant. In this case, as the atypical sequence has switch
101 105 102 105 103 107 106 105 pressed after switch 107, the deletion algorithm will

suggest that switch 105 be removed from its location in
Now, suppose we are analyzing an atypical sequence, the atypical flight sequence. The insertion algorithm will
where the flight switch pattern at the same stage is given suggest that switch 105 be inserted before switch 107.
by: Combining these recommendations, we are able to de-

duce that the switches 107 and 105 were pressed in the
101 105 102 lOS 106 wrong order.

S



~~~~~~~ ~ ~ ~ M

Figure 2. Sample graph for landing stage of a flight.The x-axis represents the time till touchdown. The bars along
the positive y-axis represent the switches usually pressed at that stage of flight, but not pressed in this flight. The
bars along the negative y-axis represents the switches usually not pressed at that stage, but pressed for this flight. The
height of the bars gives the algorithm's confidence in its prediction. The color represents the altitude.

7. DESCRIPTION OF ALGORITHM OUTPUT at that stage of the flight, but were pressed on this flight.
The anomaly detection algorithms present the following The height of the columns indicates the confidence of
output:

~ g g the prediction. The confidence is calculated as propor-output: ~~~~~~~~~~~tionalto the improvement in the score of the objective
A grph sowintheanomlousarea insde a outier

function defined for the atypical sequence, if that partic-
Asrphsownqheaomlueaescnieenou.e ular addition/deletion was made to the sequence. A graph

sequence. ~~~~~~~~~~withno bars would mean that the algorithm cannot sug-

The graph provides a simple visual interface that will al- gest any desirable insertion/deletions with non-zero con-

low the analyst to focus his interest on the areas which fidence, and would represent a completely normal flight.
seemmostsusicios. Fr dtaild inormtionon tese

The color of the columns is representative of the altitude.
seemalmost hesuspicius Foresdeatailedi enformation on thee The colors change from darker to lighter, as the altitude

angomalies heshcanraccslaleabegneaelb.h decreases (for the graph in Figure 2, the altitude informa-
algorithmsinparallel. ~~~tion was synthetically generated, and does not represent

Figure 2 presents the graph output for a sample atypi- teata liueifrainfrtegvnfih)
cal flight taken from the data. The horizontal axis rep- Besides the test runs over real data, a number of test
resents the time remaining till touchdown. The positive siuaonweernvrsyttclygnrtdad

siertions,fthat is,rsitches tati aereeusualypesedatheei atln modified data, to test the effectiveness of the algorithms

deletions,that is,.hswitches that are usuallynoDressedatht



Figure 3. A graph showing test results over a syntetically generated dataset of sequences. The x-axis and y-axis
are the same as in Figure 2. A test dataset of similar sequences was first synthetically generated. A sequence from
the dataset was randomly picked, and every tenth symbol in the sequence, starting with the symbol at location 5, was
swapped with the immediately following symbol. The algorithms were then run over the modified sequence, to test if
they could catch these modifications. As the graph shows, the algorithms suggest a deletion, followed by an insertion,
at every swapped pair location. That is, the algorithms could successfully identify all the swap locations.

and with the same number of unique symbols as the cesfully discovered all of the modifications made to this
original flights dataset, was generated. These sequences sequence, without a single false alarm.
were generated so, that they demonstrated an approxi-
mate similarity of 75°0 to each other. A report on the anomalous areas. A report is gener-

ated, giving detailed information about each anomalous
Following this, a subsample ofthe sequences was picked event in the sequence. The report tells the analyst about
at random from the dataset, and modified in the follow- the switches anomalously pressed/not pressed during the
ing fashion: for each sequence, starting with the symbol flight, along with the confidence.
at location 5, every tenth symbol was exchanged with the
one immediately following it. For example, symbols at
locations 5 and 6 were swapped, also symbols at loca- 8. CONCLUSIONS
tion 15 and 16, 25 and 26, and so on. The algorithms This paper shows a novel algorithm to detect anomaliesdescribed in Section 6 were then run on the dataset. The in discrete sequences that record the switch positions inaim ofthe run was to check whether the algorithms could the cockpits of commercial airliners. The results so far
detect these swaps or not, as, compared to the rest of the'' ~~~~~~~arepromising in that they indicate that we are able to
sequences in the dataset identify anomalies in very large data sets of aircraft se-

Figure 3 shows the graph generated by a test run over one quence data. Moreover, we are able to indicate time steps
such sequence. As can be seen from the graph, the algo- at which certain switches should have been either de-
rithms suggest a deletion at every tenth location, start- pressed or left unchanged.
ing with location 5, followed by an insertion at the im-
mediately following location. Combined together, theseg

,, , ', . tages over standard methods, because it takes advantagetwo ctins rpreent he wap rignall mae duing of the sequential nature of the data. We plan to apply
the test modifications. In other words, the algorithm suc- teetcnqe ognrlIH rbesfrawd
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variety of aerospace platforms. 1003 - 1016.
[8] S. Budalakoti, A. N. Srivastava, R. Akella, E.

In the next stage ofthe project, we also plan to build more Turkov, "Anomaly Detection in Large Sets of High-
sophisticated models of the data sequences, such as by Dimensional Symbol Sequences", Submitted for
grouping common sets of contiguous symbol sequences ension,2005.
under a single 'super-symbol', and by training a Hidden
Markov Model over these 'super-symbol' groups. We
also plan to reduce the number of false alarms raised by
the anomaly detection algorithms. These false alarms oc-
cur because all detected anomalies are not equally im-
portant. For example, an anomaly involving a pilot talk-
ing to the control tower at an occasion different from
usual, is not as important as an anomaly where some
significant step of the landing phase was not executed.
This can be taken into account by building probabilistic
models of the sequence 'gaps', that is areas within se-
quences that do not form a part of the longest common
subsequences. These probabilistic models could be sim-
ple maximum likelihood estimate models, or more soph-
siticated models, such as modeling the gap as a Hidden
Markov Model, or as an even following a Poisson distri-
bution.
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