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Abstract 

The Optical Plume Anomaly Detection (OPAD) sys- 
tem is under development to predict engine anoma- 
lies and engine parameters of the Space Shuttle's 
Main Engine (SSME). The anomaly detection is 
based on abnormal metal concentrations in the op- 
tical spectrum of the rocket plume. Such abnor- 
malities could be indicative of engine corrosion or 
other malfunctions. Here, we focus on the second 
task of the OPAD system, namely the prediction of 
engine parameters such as rated power level (RPL) 
and mixture ratio (MR). Because of the high dimen- 
sionality of the spectrum, we developed a linear al- 
gorithm to resolve the optical spectrum of the ex- 
haust plume into a number of separate components, 
each with a different physical interpretation. These 
components are used to predict the metal concen- 
trations and engine parameters for online support of 
ground-level testing of the SSME. Currently, these 
predictions are labor intensive and cannot be done 
online. We predict RPL using neural networks and 
give preliminary results. 

1 Optical Spectrum & Engine 
Parameters 

The optical spectrum of the SSME is measured us- 
ing two dispersing instruments, the first of which 
is the OPAD spectrometer, which has two 2048 
element linear array detectors in the exit plane 
of a half-meter spectrometer. The second in- 
strument consists of 16 discrete solid-state detec- 
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tors [Whitaker el al., 19941. The spectrum is mea- 
sured at  0.5 second intervals for a test duration of 
approximately 200 seconds, and consists of readings 
of intensity as a function of discretized wavelengths. 
The wavelengths range from 3000-9500 Angstroms. 
Thus, a single test produces a data matrix Y of size 
N x p where N 55: 400 and p 55: 4500. We were given 
data from approximately 30 tests, each test being 
taken under different operating conditions. 

Figure 1 shows a typical spectrum for a fixed 
instant in time. The spectrum normally con- 
tains metal signatures (indicated by sharp peaks) 
at startup. The region between 3000 and 3500 
Angstroms is mostly due to hydroxide (OH) emis- 
sions from the hydrogen burning engine. Given the 
spectra, our objective is to predict the corresponding 
RPL and MR, whose time plots are shown in Fig- 
ure 2. Notice that the RPL signal is comprised of 
level shifts, a fact which we will exploit when making 
predictions. 

This prediction problem is difficult because of the 
high dimensionality of the observable; each observ- 
able is of dimension 4500 l .  In order to obtain 
good predictions, we developed a method to extract 
salient features from the spectrum, and then used 
those features for prediction in a neural network. 
Previous experience indicates that simply running a 
learning algorithm such as neural network backprop- 
agation on the raw data can yield poor results. 

'Note that the observable is a discretized optical spect- 
and thus is of high dimension. 



where at is a vector of size m x 1 of time varying 
coefficients, which we will use as the features in our 
predictions. The vectors yt and qt are of size p x 1. 
The vector qt is assumed to be a zero mean Gaussian 
random variable with small variance. We compute S 
and at using the following derivations. It is impor- 
tant to note that a priori, we have no knowledge of 
S or a t .  In terms of the assumed noise model (which 
we denote by A) we have for a given time t ,  

2 OH Component Decompo- 
sit ion 

We decompose the OH spectrum (ranging from 
3000-3500 Angstroms) into m features for each time 
step using the following method. We begin by as- 
suming a model in which each spectrum yt can be 
written as a linear combination of m stationary com- 
ponents s j ,  i = 1, . . . , m, where si is of size p x 1. If 
we take S = [sl, sz, , . . . , s,], S is a p x m matrix, 
and 

Figure 1: A typical optical spectrum from the ex- 
haust plume of the Space Shuttle Main Engine. 
The region between 3000 and 3500 Angstroms is 
mainly due to OH emissions, the spike at 5900 
Angstroms is due to sodium, and the region beyond 
7000 Angstroms is from water emissions. 

oc exp - (Sat - ~ t ) ~ ( S a t  - y t )  
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Figure 2: Typical traces of the rated power level 
(RPL) and the mixture ratio (MR) of the Space 
Shuttle Main Engine. These traces are difficult to 
obtain on-line. Our goal is to use the optical spec- 
tra to predict these parameters. 

Taking the negative log-likelihood, ignoring all con- 
stants of proportionality, and summing over t = 
1 . . . N, we obtain the standard sum-squared error 
criterion: 

We minimize this quadratic form in the usual man- 
ner by computing the solution to the corresponding 
normal equations (the solutions are given below). 
Minimizing this quadratic form will not necessarily 
yield orthogonal components si. In order to obtain 
orthogonal solutions, (so that PS R I,, where I ,  
is the m x m identity matrix) we use the follow- 
ing iterative algorithm. We compute each column of 
the matrix S (denoted by si) separately in a manner 
which guarantees orthogonal solutions. If we denote 
the ith component of the vector at by af,  we have 
the following algorithm: 

Algorithm for OH Component 
Decomposition 

1. Loop for i = 1, . .., m do: 

2. Initialize si = random(p,l). Obtain a random 
p x 1 vector. 



Repeat 

at = 

s; = 

C = 

Until C < E ,  where c is a user defined positive 
stopping criterion. 

Compute  yt + yt - siaf for all t = 1, . . . , N 

End loop. 

In step 5, we replace the current value of yt with 
the residuals and repeat the loop. This step insures 
that the OH components will be orthogonal. This 
algorithm converges to a solution quickly (no more 
than 5 iterations), and can be shown to produce re- 
sults similar to the singular value decomposition of 
the data matrix. 

After the algorithm has been executed, we are 
left with a factorization of the data matrix Y = 
[yl, y2, . . . , yN]T which is an N x p matrix such 
that Y = ( S A ) ~ ,  where A is an m x N matrix, and 
S is a p x m matrix with P S  z I,. 

We interpret the A matrix as a matrix of features 
for the data matrix Y.  Since we assume that the 
matrix of components S does not change with time 
or test set, once we have obtained an S matrix, we 
can use it to compute feature matricies A. The rows 
of the feature matricies are used for predicting the 
engine parameters. 

Figure 3 shows a typical value of S for m = 3. 
Each panel corresponds to a different column of the 
S matrix. These components contain greater than 
99.99% of the variance in the spectral signal. Since 
a high percentage of the variance is captured, ap- 
proximating each optical spectrum by a linear com- 
bination of these components is not a poor approxi- 
mation. 

The first component captures the greatest vari- 
ability in the signal, and has the same order of mag- 
nitude as the original signal. Each subsequent com- 
ponent successively captures the smaller variability 
in the signal. The second component is at the level 
of the noise in the system, while the remaining com- 
ponent is a factor of 10 below the noise level in the 
system. The third component corresponds to known 
sinusoidal fluctuations in the measurement device. 

Figure 4 shows the variation of these components 
with time. Each panel corresponds to a different row 

Figure 3: After applying our algorithm to the spec- 
tral data, we found that the spectral signals could be 
decomposed into a linear combination of the above 
normalized components. 

in the feature matrix A. The features exhibit level 
shifts, a fact which will aid in predicting the rated 
power level of the engine. 
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Figure 4: This plot shows how the components in the 
previous figure vary with time. These variations will 
be used for the prediction of the engine parameters. 

Comparison with Principal Compo- 
nents 

Our algorithm does not yield the same re- 
sults as standard principal component analysis 
(PCA) [Rao, 19651. PCA yields the eigenvectors of 
the covariance matrix 



where j is an appropriately sized column vector of 
ones. The covariance matrix is centralized to have 
zero mean, whereas the original data matrix Y is not 
centralized. Our algorithm does not operate on the 
covariance matrix, but directly on the data matrix 
Y. We did not use PCA because the matrix A is of 
size p x p  (which is about 4500x4500 in this example) 
which could have led to  numerical or computational 
problems. 

3 Prediction with Neural Net- 
works 

When mapping from the optical spectrum to the 
engine parameters, we are implicitly assuming that 
the spectrum contains sufficient information to re- 
construct the parameters. More precisely, we are 
assuming that the system has the following form: 

where i t  denotes the derivative of the system's state 
with respect to  time, xt E Rn, G E RP, u is a 
possible input into the system, ct process noise, qt 
measurement noise, and yt is the observable. The 
model parameters are B E R4. This system is po- 
tentially nonlinear and time-varying. In our case, 
we consider a restricted state xt = [RPLt, M R ~ ] ~  
and assume that the observable y t  contains the in- 
formation necessary to reconstruct the state xt. We 
implicitly assume that G is an unknown, possibly 
nonlinear, invertible function, which is in contrast 
with the classical observer  problem, where G is as- 
sumed to be noninvertible. Said differently, we are 
assuming that the observable yt contains the neces- 
sary information to reconstruct xt.  

For the prediction, we reconstruct an element 
of the state x given example pairs (x, y) without 
knowing the nature of the functions F and G or 
the model parameters 8. This problem lends it- 
self naturally to a neural network approach, since 
the networks can be designed to learn the 'in- 
verse' function G-'. Although the mapping G may 
not have a unique inverse, it can be shown that, 
given enough training examples, the neural net- 
work will converge to a solution such that x = 
G-l(y) [Jordan and Rumelhart, 19921. 

Our preprocessing algorithm reduces the dimen- 
sionality of yt and leaves us with the easier problem 
of finding a mapping from the feature matrix A to 
the engine parameters. In this discussion, we will 
focus on prediction of the rated power level (RPL). 

We are developing methods to predict the mixture 
ratio (MR) which is expected to  be a more involved 
prediction task. 

Neural Network Design 

Neural networks are mathematical structures that 
can learn from implicit or explicit rules. These 
are a powerful class of models, and have 
been used for a variety of applications such 
as speech recognition [Nadas and Mercer, 19951, 
control [Miller et al., 19901, and time series pre- 
diction [Weigend, 19951. In the late 1980's, 
[Cy benko, 19891 and several other independent re- 
searchers [Hornik et al., 1989, Funahashi, 19891 pro- 
duced a celebrated result which showed that if the 
number of hidden units in the hidden layer of a two 
layer network is sufficiently large, the network can 
approximate any continuous function t o  any degree 
of accuracy over a compact set. 

Figure 5 shows a diagram of a full multilayer neu- 
ral network. This network is comprised an input 
layer, a hidden layer (so called because the user only 
indirectly gives this layer an input), and an output 
unit. Although we are only considering networks 
with a single hidden layer, it is possible to  include 
more hidden layers. 

A 

RPL 

Output layer 0 uall) 

Hldden layer (k unlts) 

Input layer (n Inputa) 

Figure 5: A multilayer, feedforward neural network 
for estimating the RPL of the SSME. The network 
consists of n inputs, k hidden units (tanh) and one 

h 

output corresponding to the estimate RPLt. The 
network is trained using the backpropagation algo- 
rithm. 

The n z r a l  network produces an estimate of the 
RPLt , RPL* , using the following nonlinear function: 

where z E Rn is the input to the network, Wl E 
R~~~ is the weight (or parameter) matrix between 
the input layer and the hidden layer, B1 E R ~ "  
is the corresponding bias vector, W2 E R~~~ are 
the weights between the hidden layer and the out- 
put layer, with 32 € RmX1 being the corresponding 



biases. The function a(.) E R~ is the tanh func- 
tion and +(.) E R' could be a linear or nonlinear 
function. The neural network is thus a well-defined 
functional mapping from Rn t-+ R1. 

Details of the RPL Prediction Network 

The following are the important elements of the net- 
work which we used to  predict the RPL of the SSME. 

0 Inpu t s .  The neural network had 9 inputs corre- 
1 2 sponding to [a:, a:, a:, .... at-2, a,-2, a:-,]. 

The inputs consist of the past three values of 
each row of the feature matrix. These inputs 
are used to predict RPLt. We used three past 
values of the feature vectors (as opposed to us- 
ing a single value) in order to  make the network 
robust to  noise in the feature vectors. 

0 H i d d e n  Layer. 8 tanh hidden units. 

0 O u t p u t  Layer. 1 sigmoidal unit. We chose 
to use the sigmoidal output unit instead of a 
linear unit because the RPL is a piecewise con- 
stant function. Thus, we can view the problem 
as one of classafying the input into the correct 
output. The choice of a sigmoidal output unit is 
appropriate for classification problems such as 
this [Chauvin and Rumelhart, 19931. Usually, 
the sigmoidal output unit is used for two-class 
classification problems. In our problem, how- 
ever, we have a continuum of classes. Since the 
range of the sigmoidal function is between 0 and 
1, we scaled the target data to fall within this 
range. 

Tra in ing  and Cost  Funct ion.  Sum-squared 
error between the estimated and the ac- 
tual RPL using the backpropagation algo- 
rithm [Chauvin and Rumelhart, 19931 with no 
momentum term. 

4 Results 

Figure 6 shows the performance of the neural net- 
work for predicting the RPL. The top panel shows 
the performance on the training set, and the other 
two panels show out-of-sample performance. Each 
panel contains three curves. The solid curve is the 

'The sigmoidal function is defined as f (z) = *. 

actual RPL signal, the dotted line is the neural net- 
work's prediction, and the dash-dot line is the pre- 
diction of a simple linear predictor. The linear pre- 
dictor generates a linear mapping from the input 

2 vector [a:, a:, 4, ..., a:-2, at-2l g W 2 ]  to  the 
output RPL. Listed above each panel is the ratio of 
the sum squared errors of the linear predictor to the 
neural network predictor. 

Figure 6: This figure shows the performance of the 
neural network for predicting the RPL of the Space 
Shuttle Main Engine using the features produced by 
our algorithm for three different test sets. The first 
panel is the training set, and the lower two panels 
show out-of-sample performance. The solid line cor- 
responds to the actual RPL signal, the dotted line 
is the neural network's prediction, and the dot-dash 
line is the output of a simple linear predictor. 

The performance of the two predictors is compara- 
ble for the training set (first panel), but the network 
has higher out-of-sample performance. The bottom 
panel in the figure also illustrates that the network 
can predict the trend of the RPL signal more reliably 
than the linear predictor. 

5 Discussion 
We have demonstrated the use of a neural network 
for predicting the rated power level (RPL) of the 
Space Shuttle Main Engine (SSME) using the op- 
tical spectrum of the exhaust plume. The problem 
is challenging because the observable is of high di- 
mension. We resolved the spectrum into a number of 
orthogonal components, and then expressed each ob- 
servable as a linear combination of the components. 
The coefficients in this linear combination were used 



as inputs to the network. [Rao, 19651 C. R. Rao. Linear Statistical Inference 
The algorithm which we designed delivers orthog- and its ~ ~ ~ l i c a t i o n s ~  John Wiley and Sons, New 

onal component vectors. One direction of future re- York, 1965. 
search will be to modify our algorithm to create or- 
thogonal feature vectors. These features may yield 
better predictions. Another area of research will be 
to analyze other, more complex, linear predictors 
and compare their performance to our neural net- 
work. 

[Weigend, 19951 A. S. Weigend. Time series analy- 
sis and prediction. In P. Smolensky, M. C. Mozer, 
and D. E. Rumelhart, editors, Mathematical Per- 
spectives on Neural Networks, Hillsdale, NJ, 1995. 
Lawrence Erlbaum Associates. 

We will use similar strategies to those discussed [whitaker , 19941 K. W. whitaker, K. ~ ~ i ~ h -  
here to predict the mixture ratio (MR) of the engine. nakumar, R. V. Ravikrishna, and R. C. Lat- 
That signal is expected to be more difficult to predict tus. Predicting species concentrations in the ssme 
than the RPL, mainly because it is not piecewise plume using neural networks. Unpublsihed, 1994. 
constant. The neural network predictors for RPL 
has been implemented in a real-time system at  the 
Marshall Space Flight Center; however, at  the time 
of publication, no results are yet available. 
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