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Abstract. Ecosystem-related observations from remote sensors on satellites offer huge potential
for understanding the location and extent of global land cover change. This paper presents a
comparative study of three time series based algorithms for detecting changes in land cover. The
techniques are evaluated quantitatively using forest fire ground truth from the state of California
for 2000–2009. On relatively high quality data sets, all three schemes perform reasonably well,
but their ability to handle noise and natural variability in the vegetation data differs dramatically.
In particular, one of the algorithms significantly outperforms the other two since it accounts for
variability in the time series.

1. Introduction

The climate and earth sciences have recently undergone a rapid transformation from a data-
poor to a data-rich environment. In particular, climate and ecosystem related observations from
remote sensors on satellites, as well as outputs of climate or earth system models from large-scale
computational platforms, provide terabytes of temporal, spatial and spatio-temporal data. These
massive and information-rich datasets offer huge potential for advancing the science of land cover
change, climate change and anthropogenic impacts.

One important area where remote sensing data can play a key role is in the study of land cover
change. Specifically, the conversion of natural land cover into human-dominated cover types con-
tinues to be a change of global proportions with many unknown environmental consequences. In
addition, being able to assess the carbon risk of changes in forest cover is of critical importance for
both economic and scientific reasons. In fact, changes in forests account for as much as 20% of the
greenhouse gas emissions in the atmosphere, an amount second only to fossil fuel emissions.

Thus, there is a need in the earth science domain to systematically study land cover change in
order to understand its impact on local climate, radiation balance, biogeochemistry, hydrology, and
the diversity and abundance of terrestrial species. Land cover conversions include tree harvests
in forested regions, urbanization, and agricultural intensification in former woodland and natural
grassland areas. These types of conversions also have significant public policy implications due to
issues such as water supply management and atmospheric CO2 output. In spite of the importance of
this problem and the considerable advances made over the last few years in high-resolution satellite
data, data mining, and online mapping tools and services, end users still lack practical tools to help
them manage and transform this data into actionable knowledge of changes in forest ecosystems
that can be used for decision making and policy planning purposes.

For ecosystem data, change detection is the process of identifying changes in the cover type and/or
human use of the Earth. Examples include the conversion of forested land to barren land (possibly
due to deforestation or a fire), grasslands to golf courses and farmland to housing developments.
There is a large body of research in change detection using remotely sensed image data. Most pre-
vious change detection studies primarily rely on examining differences between two or more satellite
images acquired on different dates [9]. However, these techniques have well-known limitations (as
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discussed in Section 2) and are suitable for use in relatively small areas or to describe changes in
specific categories of interest [8, 13, 20, 21] because they are inherently unsuited for global analysis.

More recently, several time series change detection techniques have been explored in the context of
land cover change detection. Lunetta et al. [17] presented a change detection study that uses MODIS
data and evaluated its performance for identifying land cover change in North Carolina. Kucera
et al. [15] describe the use of CUSUM for land cover change detection. However, no qualitative
or quantitative evaluation was performed. The Recursive Merging algorithm proposed by Boriah
et al. [5] follows a segmentation approach to the time series change detection problem and takes the
characteristics of ecosystem data into account. They provide a qualitative evaluation using MODIS
EVI (Enhanced Vegetation Index) data for the state of California and MODIS FPAR (Fraction of
Photosynthetically Active Radiation) data globally.

In this paper, we investigate the performance of these three techniques and their variations for
the task of land cover change detection. In particular, we present a quantitative assessment of these
techniques using the forest fire ground truth data in California and analyze the key characteristics
of each technique that impact their suitability for land cover change detection problem.

1.1. Key Contributions. The key contributions of this paper are as follows:

• We systematically study the three algorithms (and their variations) for land cover change
detection. We quantitatively evaluate their performance using forest fire ground truth from
2000—2009 for the state of California.

• We compare the three algorithms and their variations in their ability to handle variability
inherently present in Earth Science data.

1.2. Organization of the Paper. We motivate the land cover change detection problem and
discuss previous work in Section 2. In Section 3, we present the three change detection algorithms
studied in this paper. Section 4 presents the experimental evaluation with multiple input data sets,
and provides a discussion of the results. Section 5 contains concluding remarks. Note that most
figures in this paper are best seen in color.

2. Time Series-based Land Cover Change Detection: Background and Related

Work

There is an extensive literature on time series change detection that can, in principle, be applied
to the land cover change detection problem. Time series based change detection has significant
advantages over the comparison of snapshot images of selected dates since it can take into account
information about the temporal dynamics of landscape changes. In these schemes, detection of
changes is based on the pattern of spectral response of the landscape over time rather than the
differences between two or more images collected on different dates. Therefore, additional parameters
such as the rate of the change (e.g. a sudden forest fire vs. gradual logging), the extent, and pattern
of regrowth can be derived. By contrast, for image-based approaches, changes that occur outside
the image acquisition windows are not detected, it is difficult to identify when the changes occurred,
and information about ongoing landscape processes cannot be derived. For illustration, Figure 1
shows an example of a land cover change pattern that is typically of interest to Earth Scientists.
The time series shows an abrupt jump in EVI in 2003. The location of the point corresponds to a
new golf course, which was in fact opened in 2003. Changes of this nature can be detected only with
high resolution data.

Time series change detection, in general, is an area that has been extensively studied in the fields
of statistics [12], signal processing [11] and control theory [16]. However, many of these techniques
are not suitable for the land cover change detection problem primarily because they are not scalable
or they are unable to take advantage of the inherent structure present in earth science data. For
example, the major mode of behavior in the vegetation signal is seasonality, i.e., the natural seasonal
growing cycle is a dominant characteristic of a time series and this intrinsic seasonality should not
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Figure 1. This figure shows an example of a change point in the San Francisco
Bay Area which corresponds to a new golf course constructed in Oakland, CA. This
golf course was built in 2003, which corresponds to the time step at which the time
series exhibits a change.

itself be called a change. In addition, there exists an inherent natural variability and noise in the earth
science data because of local weather, geography, and atmospheric conditions. Additional challenges
in global land cover change studies include the massive data size, high degree of geographic/inter-
region variation, missing data, disparate land cover types, and the large variety of changes that can
occur. There are three key approaches to time series change detection:

Parameter change: In this setting, the time series is expected to follow a particular distri-
bution and any significant departure from the distribution is flagged as a change. Fang et al.
[10] presented a parameter change based approach for land cover change detection. CUSUM
(and its variants) is the most well-known technique of the parameter change approach.

Segmentation: The goal of the segmentation problem is to partition the input time series into
homogeneous segments (the subsequence within a segment is contiguous). Segmentation is
essentially a special case of change detection since by definition, successive segments are
not homogeneous, which means there is likely to be a change point between the segments.
Recursive merging follows a segmentation-based approach to change detection.

Predictive: Predictive approaches to change detection are based on the assumption that one
can learn a model for a portion of the input time series, and detect change based on deviation
from the model. The underlying model can range from relatively simple smoothing models
to more sophisticated filtering and state-space models. The change detection algorithm used
to generate the Burned Area Product (a well-known MODIS data set) follows a predictive
approach. This algorithm performs very poorly in parts of North America such as California
[19] as illustrated in Figure 2. In addition, such products are geared towards specific kinds
of changes (such as fires), and are not capable of detecting the broad set of changes can
potentially be addressed (such as those due to deforestation, floods, droughts and insect
infestations).

For a more comprehensive discussion of related work in land cover change, and the broader
problem of time series change detection, we refer the reader to [4].

3. Algorithms for Land Cover Change

This section provides a brief description of the three time series change detection algorithms that
are being evaluated in this study.

3.1. Recursive Merging Algorithm. Segmentation based algorithms operate under the assump-
tion that given time series can be partitioned into homogeneous segments and boundaries between
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Figure 2. This figure illustrates the poor coverage of the Burned Area product in
California. The figure is a screen shot from Google Earth that shows the boundary
of a fire near San Diego in 2003 (red line), and the pixels detected by the Burned
Area product (circular markers).

the segments represent change points. There are two commonly used strategies to segment the time
series [14]. A top-down strategy recursively partitions the time series till a stopping criteria is met.
A bottom-up strategy on the other hand recursively merges smaller units . Existing techniques for
segmentation ignore many key characteristics of the underlying ecosystem data such as seasonality
and variability. Here we discuss the recursive merging algorithm [5] that follows a segmentation
approach to the time series change detection problem and takes the characteristics of the ecosystem
data into account.

The main idea behind the recursive merging algorithm is to exploit seasonality in order to dis-
tinguish between points that have had a land cover change and those that have not. In particular,
if a given location has not had a land cover change, then we expect the seasonal cycles to look very
similar going from one year to the next; if this is not the case, then based on the extent to which
the seasons are different one can assign a change score to a land location. Recursive Merging follows
a bottom-up strategy of merging annual segments that are consecutive in time and similar in value.
A cost corresponding to each merge is defined as a notion of the distance between the segments. We
use Manhattan distance in our implementation of the algorithm, although other distance measures
can be used. One of the strengths of the Manhattan distance is that it takes the seasonality of the
time series into account because it takes difference between the corresponding months. The key
idea is that the algorithm will merge similar annual cycles and most likely the final merge would
correspond to the change (if a change happened) and would have the highest cost of merging. In
case the maximum cost of merging is low, it is likely that no change occurred in the time series.

The algorithm described above takes into account the seasonality of the data but not the vari-
ability. A high cost of merge in a highly variable time series is perhaps not as reliable indicator of
change as a moderate score in a highly stable time series. In recursive merging algorithms the cost
for the initial merges can be used as an indicator of the variability within each model. To account for
this variability, the change score is defined as the ratio of the maximum merge cost (corresponding
to difference in models) to the minimum merge cost (corresponding to the intra-model variability).
Time series with a high natural variability, or time series with noise data due to inaccurate mea-
surement have a high minimum cost of merging also, thus a smaller change score. As we show in
Section 5.5 this method incorporates handling of noise and reduces false alarms in change detection.
We will refer to this scheme as RM0.
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3.2. Lunetta et al. Scheme. This anomaly based method for identifying changes relies on the fact
that in a spatial neighborhood most of the locations remain unchanged and only a few locations get
changed at any particular time interval.

For every location the algorithm computes the sequence of the annual sum of vegetation index
for each year. The difference between the annual sum of consecutive years is then computed. We
will refer to this as diff-sum. This is equivalent to applying first-order differencing [7] to the time
series of annual sums. High values for the difference in the annual sum for consecutive years indicate
a possible change. To determine the “strength” or “significance” of this change, Lunetta et al.
compute a z-score for this diff-sum value for the combination of each year boundary and spatial
location. When computing the z-score, Lunetta et al. define the standard deviation across all the
spatial neighbors of the pixel for that time window in the data set and they further assume that diff-
sum is normally distributed with a mean of 0 in the spatial neighborhood. An implicit assumption
made by the scheme (due to this method of z-score computation) is that at each yearly boundary,
same fraction of locations undergo land cover change. Note that high values of z-score indicate
a decrease in vegetation and vice-versa. In subsequent discussions, we will refer to the scheme
described above as the LUNETTA0 scheme.

3.3. CUSUM. Statistical parameter change techniques assume that the data is produced by some
generative mechanism. If the generative mechanism changed then the change will cause one of the
parameters of the data distribution to change. Thus changes can be detected by monitoring the
change in this parameter. CUSUM technique is a parameter change technique that uses the mean of
the observations as a parameter to describe the distribution of the data values. The basic CUSUM
scheme has an expected value μ for the process. It then compares the deviation of every observation
to the expected value, and maintains a running statistic (the cumulative sum) CS of deviations
from the expected value. If there is no change in the process, CS is expected to be approximately
0. Unusually high or low values of CS indicate a change. A large positive value if CS indicates
an increase in the mean value of the vegetation (and vice-versa). We will refer to this scheme as
CUSUM MEAN.

4. Experimental Evaluation

4.1. Earth Science Data. The Earth Science data for our analysis consists of snapshots of mea-
surement values for a vegetation-related variable collected for all land surfaces. The data observations
come from NASA’s Earth Observation System (EOS) [1] satellites and the data sets are distributed
through the Land Processes Distributed Active Archive Center (LP DAAC) [2].

The specific vegetation-related variable used in this analysis was the enhanced vegetation index
(EVI) product measured by the moderate resolution imaging spectroradiometer (MODIS) instru-
ment (although any other vegetation index such as FPAR or NDVI could have been used). EVI is
a vegetation index which essentially serves as a measure of the amount and “greenness” of vegeta-
tion at a particular location; Figure 3 shows a snapshot of EVI for the globe. MODIS algorithms
have been used to generate the EVI index at 250-meter spatial resolution from February 2000 to
the present; in this paper, the temporal coverage of the data is from the time period February
2000—January 2009.

4.2. Evaluation Data Set. Since our ground truth is about forest fires in California we created
two data sets DS1 and DS3 which consists of forest pixels in California as described below.1

1A land cover map obtained from the Ecosystem Modeling Group at NASA Ames Research Center was used to
subset forest pixels. The following land cover classifications were considered forest: Evergreen Needleleaf, Evergreen
Broadleaf, Deciduous Needleleaf, Deciduous Broadleaf Forest, Mixed Forests.
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Figure 3. The above MODIS Enhanced Vegetation Index (EVI) map shows the
density of plant growth over the entire globe for October 2000. Very low values of
EVI (white and brown areas) correspond to barren areas of rock, sand, or snow.
Moderate values (light greens) represent shrub and grassland, while high values
indicate temperate and tropical rainforests (dark greens).
Source: MODIS Land Group, Alfredo Huete and Kamel Didan, University of Arizona.

DS1: (Highest quality data).
To create DS1, we preprocessed the data to eliminate poor-quality measurements by performing the
following steps:

(1) The MODIS quality assurance (QA) flag (which describes atmospheric and sensor conditions
under which the spectral measurements were taken) was used to retain only those obser-
vations of good quality, removing all observations that were tagged as being of marginal
or of low quality. Another filtering step performed (recommended by earth science domain
experts) was the removal of EVI measurements less than or equal to 0 and above 0.9.

(2) To reduce the impact of quality filtering, we converted the biweekly data to monthly data
by averaging (using a simple mean) the available data for every month.

(3) We then discarded all locations that contained any missing data. In other words, the data
for a location is retained only if the entire time series is available with no missing values and
no low quality data.

DS3: (Unfiltered data).
DS3 consists of the raw data without any processing for quality, i.e., the quality flag is not examined
and we do not filter observations outside the recommended valid range.

The key characteristics and properties of the two data sets are summarized in Table 1. Note that
by permitting noisy values, there is an over five-fold increase in the spatial coverage.

Data Set # of pixels (N ) Frequency Length of Time
Series (T )

Noise Missing Data

DS1 148,770 Monthly 108 Low level No
DS3 787,777 Biweekly 207 High level No

Table 1. Summary of evaluation data sets.

4.3. Ground Truth Data. Change detection studies are frequently plagued by the lack of good
ground truth data [18] which forces the evaluation process to be more qualitative in nature. This
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Figure 4. Example of a polygon representing the boundary of a fire.

frequently makes it difficult to objectively answer the question: what is a change?. In this study, we
have utilized high quality ground truth data for fires generated by an independent source, and are
thus able to perform an objective quantitative evaluation. We obtained fire boundaries generated
by the state of California for the fire seasons for the years 2000 through 2008.

The ground truth data is in the form of polygons which represent the boundaries of forest fires.
Each polygon P is a closed shape that consists of N sides (N is usually in the hundreds), with
each vertex represented as a latitude/longitude coordinate pair, and may contain one or more holes
Hi, i = 1 . . . n. The boundary of an individual fire is then P \ {H1 ∪ H2 ∪ . . . ∪ Hn}. A example
of a fire boundary is shown in Figure 4; the fire occurred in 2004 near Santa Clarita, CA. The blue
filled region represents the polygon; the dark blue line is the outside boundary of the polygon, while
a hole can be seen in the middle of the map.

There are two issues with the ground truth that we are using for evaluation. First, there are
changes in California forests due to other reasons that fire(e.g due to logging). Since they are not
part of the ground truth, they will be considered false positives if they are discovered by the change
detection algorithm. Second issue arises due to the inaccuracy of the forest filter due to which many
non-forest locations such as farms also become part of our data set. These locations may have actual
change that is detected by the algorithm but again it will appear to us as false positive. However,
we expect these issues will impact all the algorithms similarly and thus we will still be able to make
judgement about there relative performance.

4.4. Evaluation Methodology. Given a time series data set D with N pixels, let us assume that
any change detection technique returns a list of change scores of length N , where each change
score is a measure of the degree of change for the corresponding pixel. We also have a ground
truth data set which consists of the true labels of each of the pixels; let M be the total number of
actual disturbances as determined by ground truth. To evaluate the performance of a given change
detection algorithm at rank n, we count the number of true disturbances in the top n portion of the
sorted change scores of all the pixels, where n is the number of actual disturbances (1 ≤ n ≤ M).
Let TPn be the number of actual disturbances in the top n predicted disturbances, and FPn be the
number of pixels that are in the top n portion but are not actual disturbances.

We evaluate performance by examining the sorted list of change scores. Specifically, performance
is measured in terms of the number of instances correctly identified and the number of instances

181

2010 Conference on Intelligent Data Understanding



0 0.5 1 1.5 2
x 104

0

0.2

0.4

0.6

0.8

1

 0.71

Threshold (# of pixels), n

Algorithm: RM0      Dataset: DS1

Precision, pn
Recall, r

0 0.5 1 1.5 2
x 104

0

0.2

0.4

0.6

0.8

1

 0.67

Threshold (# of pixels), n

Algorithm: LUNETTA0      Dataset: DS1

Precision, pn
Recall, r

0 0.5 1 1.5 2
x 104

0

0.2

0.4

0.6

0.8

1

 0.53

Threshold (# of pixels), n

Algorithm: CUSUM_MEAN      Dataset: DS1

Precision, pn
Recall, r

Figure 5. Comparison of algorithms on DS1.
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Figure 6. Comparison of algorithms with noisy data (DS3).

missed in the top-n ranked instances. We use a precision metric (called pn) employed in context of
information retrieval [3] and anomaly/outlier detection [6], which is appropriate for the top-n ranked
setting. The performance metrics are defined as follows:

Precision, pn =
TPn

TPn + FPn
Recall, rn =

TPn

M

Note that as n increase, pn will tend to decrease (a greater fraction of lower scoring points are
likely to be false positives) and recall will increase (since, eventually for large enough n, all true
positives will be included). One specific value of interest is the one when n is equal to the number
of fire pixels (ground truth). At this value of n, pn = rn since TPn + FPn = M. Also, if the change
detection algorithm does the perfect job of identifying fires, then upto this value of n, pn will remain
1 (and then start to drop for increasing values of n) and rn will linearly increase from 0 to 1 (and
then stay at 1 for larger values of n).

4.5. Experimental Results. The three algorithm were run on datasets DS1 and DS3. Figure 5
and 6 shows precision and recall curve for each algorithm as n changes from 1 to the number of
fire pixels in the ground truth for each dataset (18450 in DS1 and 82311 in DS3). Tables 2 and 3
show overall results (aggregate count) broken down by each year. It is to be noted that the false
positives labelled by the ground truth can either be time series incorrectly classified as change by
the algorithms or can be changes other than fires like logging, conversion to golf course etc.

4.6. Observations.

(1) Performance is better on DS1 than DS3

Figure 5 and 6 show that all the three algorithms perform better on DS1 than DS3. The
primary reason is that data set DS3 has no quality filtering and thus contains time series
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# of pixels in fire polygons
Year Polygon Size RM0 LUNETTA0 CUSUM MEAN

2000 111 54 39 12
2001 1142 814 850 1009
2002 2407 1383 2119 2164
2003 4946 3609 3670 4338
2004 661 423 463 521
2005 192 96 128 134
2006 278 146 197 152
2007 1935 1413 1353 1360
2008 6778 5312 3811 490

SUM 18450 13250 12630 10180
pn(= rn) 1.00 0.72 0.68 0.55

1 The second column shows the # of pixels in the data set that fall in the fire polygons
2 The next three columns show the number of pixels detected by respective change detection

algorithms that fall in the fire polygons.

Table 2. Results of algorithms on DS1.

# of pixels in fire polygons
Year Polygon Size RM0 LUNETTA0 CUSUM MEAN

2000 1379 458 58 443
2001 6827 3661 105 5520
2002 12114 7061 1238 9335
2003 12292 8514 937 9915
2004 4218 2786 857 3152
2005 744 293 115 336
2006 6165 3900 442 3948
2007 10671 9285 423 6736
2008 27901 17581 2423 1742

SUM 82311 53539 6598 41127
pn(= rn) 1.00 0.65 0.08 0.50

1 The second column shows the # of pixels in the data set that fall in the fire polygons
2 The next three columns show the number of pixels detected by respective change detection

algorithms that fall in the fire polygons.

Table 3. Results of algorithms on DS3.

which are highly noisy. These time series can receive artificially high change score due to
noisy values.

(2) RM0 outperforms LUNETTA0 and CUSUM MEAN

Figure 5 and 6 show that RM0 consistently performs better than LUNETTA0 and CUSUM MEAN

on both the datasets DS1 and DS3. The difference in performance is especially significant
on the dataset DS3; The reason is that DS3 has more time series that are highly variable
because of no quality filtering and RMO is able to perform better since it has a built-in
notion of variability modeling (we illustrate this is greater detail in the next paragraph).
The following illustrative examples highlight the difference between the three algorithms in
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rank: 694 (FP)   location: 38.261458, −119.717100

Figure 7. Sample of a false positive detected by CUSUM MEAN MISSING on DS3.

their ability to handle variability in time series. Figure 7 shows a false positive that was
detected by CUSUM MEAN but not by RM0 and Figure 8 shows a false positive that was
detected by LUNETTA0 but not by RM0. RM0 due to its ability to account for variability
gives these time series a low change score and does not detect them as change points.

(3) RM0 does well because it takes into account the variability in the time series
To assess the ability of RM0 to model variability, we evaluate a variation of RM0 that does
not perform the normalization step of RM0 (i.e we do not divide the score by the minimum
of the scores of merging). We refer to this scheme as RM NO NORM. Figure 9 shows the
precision and recall curve for the RM NO NORM. It can be observed that the performance
of RM NO NORM degrades severely compared to RM0 especially on the dataset DS3. As an
illustration, Figure 10 shows a time series that is given a high change score by RM NO NORM

but not by RM0.
(4) LUNETTA0 can be improved by eliminating normalization

Table 4 and Figure 11 show the number of pixels burned in each year from 2001 to 2008 on the
DS1 data set. Also shown is the standard deviation of the annual differences corresponding
to each year. The data indicates that the standard deviation of annual differences is higher
for time periods when a greater number of pixels are burned (Similar conclusions were drawn
for DS3). For these years (especially 2008), the change scores will be diminished compared
to a year such as 2006. This means that if pixel ni has a fire in 2006 and pixel nj has
a fire in 2008 and they have exactly the same time series, pixel ni will receive a higher
change score than pixel nj . Thus, we observe that the normalization step performed in
Lunetta can lead to a suboptimal change score when there is a difference in the variability
of delta over different years (which is what happens in the case of forest fires). To test this
observation, we implemented a variation of LUNETTA algorithm that skips the normalization
step. We refer to this scheme as LUNETTA NO NORM. From Figure 12 it is clear that
LUNETTA NO NORM performs better than the original Lunetta scheme. However, it is to be
noted that LUNETTA NO NORM still performs worse than RM0.

5. Conclusion

A number of insights can be derived from the quantitative evaluation of the algorithms and their
variations presented in this paper. On relatively high quality datasets, all three schemes perform
reasonably well, but their ability to handle noise and natural variability in the vegetation data

184

2010 Conference on Intelligent Data Understanding



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time
(19−Feb−2000 to 18−Jan−2009)

02
−J

an
−2

00
1

02
−J

an
−2

00
2

02
−J

an
−2

00
3

02
−J

an
−2

00
4

02
−J

an
−2

00
5

02
−J

an
−2

00
6

02
−J

an
−2

00
7

02
−J

an
−2

00
8

02
−J

an
−2

00
9

E
V

I (
× 

10
4 )

rank: 139 (FP)   location: 34.957292, −119.694276

Figure 8. Sample of a false positive detected by LUNETTA0 on DS3.
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Figure 9. Performance of RM NO NORM on DS1 and DS3.

differs dramatically. In particular, Recursive Merging algorithm significantly outperforms the other
two algorithms since it accounts for variability in the time series.

However, the algorithm has several limitations that need to be addressed in future work. For
example, due to manner in which the segments are constructed from annual cycles, changes occurring
in the middle of segment boundaries are given lower scores than changes occurring at the segment
boundaries. The algorithm normalizes the change score for a given time series by the estimated
variability. The normalization is currently performed using the minimum distance between a pair of
segments, which is not optimal: Figure 13 illustrates how this normalization leads to false positives
when a time series with relatively low mean undergoes a small shift.

Additionally, there are several limitations of the experimental evaluation in this study. For ex-
ample, the ground truth data set consists of only one type of land cover change (forest fires), thus
excluding many other changes of interest. Furthermore, the nature of vegetation data in California
can be quite different from other parts of the world such as the tropics, where the issues of noise are
acute because of persistent cloud cover.
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Figure 10. Sample of a false positive detected by RM0 NO NORM on DS3.

Year # of fire pixels Standard
Deviation

2001 1142 0.20
2002 2407 0.32
2003 4946 0.27
2004 661 0.27
2005 192 0.28
2006 278 0.21
2007 1935 0.29
2008 6778 0.37

Table 4. Standard devia-
tion of integrated annual dif-
ferences on DS1.
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Figure 11. A visual represen-
tation of the data in Table 4.
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